MVTEE: Multi-Variant Trusted Execution for Secure Model
Inference

Kailun Qin
Shanghai Jiao Tong University
Shanghai, China
kailun.qin@sjtu.edu.cn

Abstract

Trusted Execution Environments (TEEs) have been proposed as
a promising approach for secure model inference, providing in-
use data protection to ensure confidentiality and integrity against
untrusted third parties, with additional attestability. However, TEE-
protected secure model inference remains susceptible to numerous
software vulnerabilities and fault attacks, potentially undermin-
ing the designed protection objectives and giving a false sense of
security and reliability.

To counter these diverse threats, we introduce MVTEE, a TEE-
based model inference system employing Multi-Variant Execution
(MVX) that runs multiple, diversified inference variants in parallel
and monitors execution divergence at checkpoints. The idea of
MVTEE is not to prevent threats, but to leverage the fact that a
specific vulnerability typically impacts only one variant, ensuring
timely threat detection and response before any damage is done.
MVTEE applies a random-balanced model partitioning for check-
point insertion and leverages the heterogeneous nature of model
inference stack to generate variants with multi-level diversification.
We base MVTEE on a cross-process monitoring architecture with a
two-stage variant bootstrap design and support asynchronous selec-
tive MVX for efficient execution. Our evaluations demonstrate that
MVTEE, in a real-world setup, secures model inference with accept-
able performance overhead in sequential execution and maintains
comparable or even improved performance in pipelined execution.

CCS Concepts

« Security and privacy — Software and application security;
Trusted computing.

Keywords

Multi-Variant Execution, Trusted Execution Environment, DNN
Inference, Software Security, Software Fault Tolerance

ACM Reference Format:

Kailun Qin and Dawu Gu. 2025. MVTEE: Multi-Variant Trusted Execution
for Secure Model Inference. In 26th ACM Middleware Conference (Middleware
’25), December 15-19, 2025, Nashville, TN, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3721462.3730956

Middleware °25, Nashville, TN, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in 26th ACM
Middleware Conference (Middleware °25), December 15-19, 2025, Nashville, TN, USA,
https://doi.org/10.1145/3721462.3730956.

Dawu Gu
Shanghai Jiao Tong University
Shanghai, China
dwgu@sjtu.edu.cn

1 Introduction

Major cloud service providers, such as Amazon AWS [1], Microsoft
Azure [104], and Google Cloud [9], offer Machine Learning (ML) in-
ference services to reduce ML infrastructure costs [43] and manage
large-scale inference queries [35, 36]. These services deploy pre-
trained models from model owners and pull user data for inference.
Today, threats including malicious tenants, compromised providers,
and physical breaches have raised significant concerns. Users de-
mand data privacy, while model owners need to protect their high-
value intellectual properties. Further, models in safety-critical appli-
cations, like high-performance computing or autonomous vehicles,
require protection against tampering to ensure reliable results.
Recently, state-of-the-art research and production cloud services
have embraced the widely accessible CPU Trusted Execution Envi-
ronments (TEEs) for secure ML inference, protecting the confiden-
tiality and integrity of in-use models and data from untrusted third
parties, with additional attestability [53, 58, 63, 65, 66, 74, 78, 94].
However, this widespread adoption has also made them more at-
tractive targets for threats that undermine security or reliability:

o Software vulnerabilities: ML frameworks and libraries are increas-
ingly plagued by memory and runtime errors, which can lead
to security breaches and incorrect outputs [24, 42, 44, 88, 139].
Unfortunately, these vulnerabilities fall outside of the TEE threat
model by design [115]. This places an unrealistic expectation on
developers to identify and mitigate such issues in advance.
Fault susceptibility: ML inference and TEEs are vulnerable to
faults from hardware issues or attacks [18, 38, 70, 76, 86, 93, 108].
These faults can lead to undesirable consequences affecting all
subsequent inputs. A recent attack highlighted the vulnerability
of model inference to runtime fault injections through a single bit-
flip at the code or library level [70]. Considering that the attack
targets only one of many vulnerable ML inference dependencies,
it is likely that more similar attacks will surface in the future.

We stress that the causes and targets of these issues vary widely,
and some are inherently complex to resolve. Therefore, our core
idea is not to prevent them to happen but to ensure they are detected
and resolved before leading to damage. In this paper, we present
MVTEE, a novel TEE-based model inference system using the Multi-
Variant Execution (MVX) technique (Figure 1) — a method that
enhances software security and reliability by running multiple,
functionally equivalent but diversified program variants in parallel
and monitoring execution divergence at designated checkpoints.
The fundamental concept behind MVX is that a particular defect
or exploit can impact only one specific variant, while the other
variants will either crash or yield inconsistent execution results.

https://doi.org/10.1145/3721462.3730956
https://doi.org/10.1145/3721462.3730956

Middleware 25, December 15-19, 2025, Nashville, TN, USA

Variant, Variant, Varianty Variant,

checkpoint,
checkpoint,

checkpoint,

Figure 1: High-Level Architecture of MVX

To insert checkpoints that enable effective early detection and
response, MVTEE applies random-balanced model partitioning,
which also provides pipelined execution opportunities.

o To generate variants with minimal manual effort, MVTEE lever-
ages the heterogeneous, interoperable, and modular nature of
the ML inference stack to introduce multi-level diversification.

o To monitor checkpoints under TEE’s threat model, we adopt a
cross-process MVX monitoring architecture for better isolation
and scalability. It supports attestable runtime variant initializa-
tion and updates based on a two-stage variant bootstrap design.

o For efficient execution, we further apply selective MVX and asyn-

chronous cross-validation strategies.

We demonstrate the practicality of MVTEE through performance
evaluations on a set of models. In a practical setup, we secure
model inference with acceptable overhead in sequential execution.
In pipelined execution, we achieve comparable performance when
the majority of the model is protected with MVX, and we see im-
proved performance when only a specific part of the model requires
hardening. We also explore the fundamental overheads of MVTEE
and analyze the efficiency of selective MVX. Our security analysis
shows that MVTEE can effectively protect against targeted attacks.

Overall, this paper makes the following contributions:

e We introduce a TEE-based MVX system for secure ML inference,
addressing its inherent security and reliability challenges. Both
MVX for ML inference and TEE-based MVX are less explored in
the previous research.

e We present an automatic approach to construct MVX check-
points and inference variants through random-balanced model
partitioning and ML-native multi-level diversification.

e We propose a generic and security-first design for a TEE-based
MVX system that includes efficiency optimizations and supports
attestable runtime variant initialization and updates.

o We demonstrate MVTEE’s efficiency through evaluations on
various real-world models and provide a security analysis of its
attack surfaces, explaining the applied mitigations.

2 Background
2.1 Secure ML Inference Service

ML inference has massive adoption in applications [48, 49]. In par-
ticular, Deep Neural Networks (DNNs) which consist of multiple
layers organized in a Directed Acyclic Graph (DAG), have emerged
as the predominant ML technique due to their efficacy [62]. To
enable easy, scalable, fault-tolerant, and cost-efficient model infer-
ence, cloud inference services have gained traction. This paradigm
is supported by major cloud service providers [1, 9, 104].

Kailun Qin and Dawu Gu

To address security concerns with cloud-based inference, two pri-
mary methods have been explored. The first involves cryptographic
techniques that come at a high performance cost [34, 50, 95, 131].
The alternative is to build inference on TEEs, which is more preva-
lent in large-scale deployments [53, 58, 63, 65, 66, 74, 78, 94, 103].

2.2 Trusted Execution Environment

TEEs isolate code and data in secure memory segments that are
inaccessible to non-TEE executions, including privileged adminis-
trators and system software. Nowadays, the majority of hardware
vendors support CPU TEEs in two types: process-based (e.g., Intel
SGX [27, 82]) and virtual machine (VM)-based (e.g., Intel TDX [6],
AMD SEV [100], ARM CCA [71]). While GPU TEE:s are recently
becoming available [10], they are less accessible, with their attack
surfaces underexplored. TEEs also provide an attestation mecha-
nism that allows a verifier to authenticate the code and data within
a local or remote TEE and securely transmit secrets to it [83, 106].

However, software vulnerabilities in workloads fall outside of
the TEE threat model [17, 25, 64, 114], and attestation only pro-
vides load-time integrity [85, 109]. In practice, workloads inevitably
contain vulnerabilities, and resolving all of them beforehand is im-
practical. TEEs are also susceptible to fault attacks, such as those
exploiting dynamic voltage scaling interfaces [52, 86] or Rowham-
mer attacks on TEE memory [46]. Notably, such fault attacks can
be executed remotely, posing a real threat to secure cloud services.
Besides, researchers have identified that TEEs are vulnerable to
side-channel and transient execution vulnerabilities [89, 113, 126].
Attackers can also exploit multiple vulnerabilities to mount attacks.

2.3 Challenges to TEE-based Secure Inference

Recent advances in ML-targeted attacks complicate achieving the
intended security and reliability objectives of TEE-based secure
inference. Firstly, a large number of vulnerabilities have been iden-
tified in ML frameworks and libraries, especially those written in
memory-unsafe languages [24, 29, 42, 44, 56, 101, 139]. Data from
the CVE website shows that since 2019, TensorFlow has had over
140 overflow and memory corruption vulnerabilities, which can
result in code execution or Denial of Service (DoS) [5]. Another
growing concern is faults targeting the weight parameters of DNN
models [18, 38, 76] or runtime inference code/libraries [70]. These
attacks identify and alter vulnerable bits to compromise model in-
tegrity and reduce prediction accuracy. Most TEE-based secure ML
inference solutions overlook these threats in their threat models.
This oversight can undermine protection efforts, causing severe
consequences in security- and safety-critical applications.

2.4 Multi-Variant Execution

The N-Version system, or Multi-Variant Execution (MVX), hardens
programs through replication and diversification, based on that any
defect or attack would impact only a subset of variants [16, 28, 32,
33, 40, 77, 97, 119, 120]. Specifically, a monitor distributes inputs to
multiple diversified variants running concurrently and periodically
checks their execution results. If discrepancies occur, MVX uses a
voting mechanism to decide which output to accept, whether to
halt, or to restart from a saved state. MVX is primarily used for
attack detection, but also for seamless software updates [39, 80, 91]

MVTEE: Multi-Variant Trusted Execution for Secure Model Inference

However, MVX is not without challenges. First, running multi-
ple variants simultaneously consumes additional CPU and mem-
ory resources [40]. Replicating entire programs also complicates
and slows down synchronization, especially when with extensive
checkpoints. Another major obstacle in practice is that creating
and maintaining diverse yet consistent software variants is difficult
and expensive [61]. Manual diversification is burdensome and may
require the involvement of several independent teams, increasing
cost and time. Other known challenges include false alarms [97, 98],
and support for multithreading [118] and shared memory [117].

3 Overview

3.1 System Model

Threat model. TEEs consider the following as untrusted: (i) hard-
ware outside the CPU package, (ii) privileged system software, (iii)
co-located applications, including unrelated TEEs (except archi-
tectural TEEs), and (iv) user-space components in the untrusted
world. Denial-of-service (DoS) attacks are considered out of scope.
MVTEE adopts this standard TEE threat model as its basis.

MVTEE aims to protect the same assets as previous secure in-
ference designs. We consider the models (including topology and
weights) and all inference data (input, output, and intermediate
data) as sensitive. We highlight runtime security of ML inference,
focusing on (i) software memory-safety and runtime errors, and (ii)
faults in models or the ML framework/libraries, which can lead to
data leaks, integrity breaches, or incorrect inference outcomes.

Side channel attacks are orthogonal and are thus out of scope. We
do not consider algorithm-level model stealing, inversion, backdoor,
and membership inference attacks where dedicated defenses are
available. TEEs can help mitigate some of these attacks like pre-load
model/code poisoning through attestation and isolation.

We assume MVTEE components are reliable and flawlessly imple-
mented. The tools used for variant generation, which may contain
vulnerabilities or produce false positives/negatives, are considered
out of scope. Same as other MVX systems, MVTEE’s precise security
guarantees depend on the exact transformations (which address
specific classes of attacks) applied to each variant. Note that such
transformations would not increase the runtime Trusted Comput-
ing Base (TCB) of the system.

o

Model
L JO)
3p I T ser
@)
Y T

w00 Oser

Partition Sets

check check

monitor

Variant Pool

Monitor & Variants (TEEs)
Figure 2: Usage and Deployment Model

Usage and deployment model. As shown in Figure 2, in the of-
fline phase, we systematically partition the to-be-protected model
into partition sets ® and generate diversified variants for each par-
tition @. This creates a pool of inference variants in an automatic
manner. During the online phase, we setup the MVTEE monitor
TEE and multiple variant TEEs. Specifically, the variants are dynam-
ically initialized from the pre-established variant pool ®, based on a
(selective) MVX plan (§4.3) maintained by the monitor. Throughout

Middleware 25, December 15-19, 2025, Nashville, TN, USA

execution, the monitor synchronizes and verifies variants’ outputs
at checkpoints and distributes them to the next stage variants for
stateless, non-interfering inferences in a pipelined fashion ®. The
monitor can then use a voting process to decide on necessary pro-
tective measures in case of detected inconsistencies. A full or partial
secure update of variants can be arranged by MVTEE ®.

3.2 Design Goals

MVTEE achieves the following design goals:

Security- and safety-first principle. MVTEE aims to diversify
model inference over space and time. Specifically, we apply random-
balanced partitioning to generate checkpoints for effective early
threat detection and response. We build a pool of diversified variants
for dynamic variant initialization and updates. We also adopt an
MVX architecture that prioritizes security and fault isolation with
minimal TCB and attack surfaces.

ML native. MVTEE leverages the heterogeneous, interoperable,
and composable nature of ML inference stack and ecosystem to
produce multi-level diversification of variants. This also promotes
the applicability and reduces the cost of manual diversification.
Adherence to TEE threat model. MVTEE must not weaken the
security assumptions in the original TEE threat model. We base on a
cross-process monitoring architecture that anchors the root of trust
in the monitor TEE rather than relying on the trustworthiness of the
host kernel. The monitor manages the attestation, key distribution,
secure binding, fault tolerance and execution state monitoring of
variant TEEs. We design a two-stage variant bootstrap to maintain
the secrecy of the MVX details from privileged attackers.
Efficient execution. MVTEE aims to deliver reliable but efficient
inference. We introduce selective MVX that replicates a flexible
number of variants only on the selected, sensitive partitions. We fur-
ther support execution in an asynchronous cross-validation mode
to accommodate potentially significant execution time differences
between inference variants in practice.

4 Design
4.1 Model Partition

To effectively generate checkpoints that enable early detection,
termination, and recovery from defects or attacks, we use model
partitioning. This method divides the computational graph of the
model into smaller subgraphs, with the connections between these
subgraphs naturally forming the checkpoints. We highlight that the
number and size of the produced partitions are crucial for maintain-
ing both security/safety and performance benefits. Specifically, the
capability of early reaction is directly proportional to the number
of partitions/checkpoints, whereas the efficiency of sequential par-
tition execution is inversely proportional. In terms of performance,
overly small partitions might lose optimization opportunities that
are provided by a ML compiler or inference runtime, as they would
now need to be applied within individual partitions rather than
across multiple ones. From security and safety perspectives, small
partitions can introduce risks due to their simplified structure, po-
tentially offering attackers unintended advantages. It could also
miss failed exploit attempts or delay safety guarantees, as some
fault-caused discrepancies may be hidden by the model’s resilience

Middleware 25, December 15-19, 2025, Nashville, TN, USA

[38] or not instantly visible [73]. In contrast, large partitions would
compromise our objective of prompt response to issues.

Therefore, to provide sufficient diversity and runtime flexibil-
ity, we use a randomized graph partitioning based on the global
min-cuts algorithm [51] for checkpoint generation, as presented in
Algorithm 1. Specifically, we formalize soft preferences (based on a
customized and extensible weight function) and hard constraints to
"bias" towards more balanced partition sizes by default. Optionally,
the algorithm can be run multiple times to identify correct and
globally optimal configurations that meet specific requirements
(e.g., balance, security levels). We repeat this model partitioning
with different target numbers, creating a diverse range of partition
sets and checkpoint configurations.

Algorithm 1: Random Contraction for Model Partitioning

Input :Model Graph G, target number of partitions ¢
Output: Array of partitions, each containing a list of nodes
1 Procedure ModelRandomContraction(G, t):

2 par, parSize < {n:nfornin G},{n: 1 for nin G};

3 edges «— {(i, j) for i, j in G if i outputs to j};

4 ComputeWeights(edges, par, parSize);

5 while number of partitions > t do

6 (i, j) « RandEdgeByWeight(edges, par, parSize);
7 if CheckConstraints(par|i], par[j]);

8 then

9 MergePartitions(i, j, par, parSize);

10 UpdateWeights(edges, par, parSize);

1 end
12 end
13 return Partitions formed by nodes sharing the same par;

We emphasize that this partition-as-checkpoint design can bring
parallelization opportunities through pipelined execution, nicely
hiding the overhead associated with MVX monitoring and synchro-
nization, as they enable compute-communication overlapping.

4.2 Variant Generation

The ML inference ecosystem offers a variety of frameworks, tools,
runtimes, acceleration libraries, and hardware backends with great
interoperability and composability. This high natural diversity pro-
vides opportunities for efficient defect and intrusion detection with
minimal manual effort, which often involves maintenance burdens
and compatibility challenges. Inspired by this observation, MVTEE
proposes an automatic, ML-native approach to generate variants
with multi-level diversification, as demonstrated in Figure 3.

transformer/
Graph ONNX | optimizer
oo convert
| TensolrFIow |‘C—'L|execute ONNX |'execute| |

TensorFlow i ONNX
Runtime Runtime L..Runtime __;

Execution Providers

iOpenVINO

Shared Library BLAS :Intel DNNL

Fo T [t Fm— ==
E:rl;?r;::e | OS Kernel J h ISA ! 1

Figure 3: Multi-Level Diversification of Variants

Kailun Qin and Dawu Gu

Model graph level. A DNN model is represented as a DAG con-
taining primitive operators connected to form functions in different
topologies. Graph-level diversification adds complexity and un-
predictability, making it harder for attackers to identify or exploit
vulnerabilities. This diversification extends to all supported lower-
level backends. Specifically, MVTEE uses Open Neural Network
Exchange (ONNX) [11] for graph-level diversification. ONNX is an
open-source format that defines an extensible computational graph
model, operators, and standard data types. It serves as a common
intermediate representation (IR) for various ML frameworks. We ap-
ply ONNX-to-ONNX transformations or optimizations to construct
functionally equivalent graph-level model variants by:

e Dummy operators: adding operators that won’t change the origi-
nal outputs such as zero or identity operators.

o Equivalent operator replacement: e.g., transforming a single op-
erator into equivalent smaller ones (decomposition) or the vice
versa (fusion), substituting a convolutional operator with an
equivalent fully connected linear operator.

e Channel manipulation: duplicating or shuffling the output chan-

nels of a convolutional or linear layer and adjusting the subse-

quent layer’s weights accordingly.

Selective optimization: instead of comprehensive optimization,

selectively fusing or eliminating operators as a defense.

Other mathematical-property-based graph rewriting [87]: e.g.,

reordering operators that are commutative in nature.

Inference instance level. MVTEE produces diversification at the
inference instance level (including the inference runtimes, acceler-
ation libraries and supported hardware) via three paths.

First, we leverage the interoperability offered by cross-framework
converters to transform a model in ONNX format to various frame-
work formats (e.g., PyTorch, TensorFlow, Mindspore, Paddle). This
enables MVTEE to execute under different ML frameworks using
distinct and configurable runtime settings.

Second, we use ONNX Runtime (ORT) [12], the default inference
engine of ONNX, leveraging its Execution Providers (EP) framework
to create variants that work with different executors, acceleration
libraries and hardware. ORT supports a wide array of EPs today.

Third, we capitalize on ML compilers such as TVM [22]. The ML
compiler processes high-level model specifications (e.g., in ONNX
format) and performs code generation, translation, and optimization
across various abstraction levels (e.g., graph-level and operator-
level) for different hardware backends. At the operator level, the ML
compiler often uses auto-tuning techniques to iteratively identify
the most efficient implementation options [14, 23, 116, 141]. This
generates trial candidates that vary in kernel parameters, tensor
operation strategies like fusion and parallelization, as well as tensor
data layouts and memory management, thereby naturally achieving
diversification. Model compilation may also involve third-party
toolchains like LLVM to apply further low-level IR transformations
(including instrumentation). In addition, TVM includes several built-
in executors and is itself supported by ORT as an EP.

Note that some inference runtimes include built-in support for
graph-level transformations. In such cases, MVTEE can either uti-
lize this feature to create configurable or non-deterministic diver-
sification, or explicitly disallow them to retain the deterministic
diversification established at the previous model graph level.

MVTEE: Multi-Variant Trusted Execution for Secure Model Inference

Other levels of variant generation. Since ML dependencies are
compiled with conventional compilers, existing compiler-assisted
security mechanisms can be applied in conjunction. These include
different types of sanitizers, stack protection, compiler-inserted
padding, runtime checks, and hardware-assisted enforcement. More-
over, system-level security mechanisms like Address Space Layout
Randomization (ASLR) are supported in MVTEE. We also support
execution in SGX and TDX, providing TEE-level variants, and of-
fer Application Binary Interface (ABI) or Instruction Set Architec-
ture (ISA) level diversification through distributed execution on
different backends. While we focus on software-level rather than
algorithm-level variant generation, these methods can be applied
independently. Inheriting from MVX, MVTEE is not limited by spe-
cific security mechanisms and allows the concurrent use of multiple
defenses by assigning different measures to each variant.

4.3 TEE-based MVX

MVTEE is composed of a monitor TEE and multiple variant TEEs
at runtime. The monitor acts as the security manager, ensuring the
correct initialization and execution states of all variants. Based on a
runtime-provisioned MVX configuration that specifies the partition
set (number and sizes of partitions) and the variant claims (type
and number of variants per partition), the monitor manages the
attestation, key distribution, binding and fault tolerance of variants.

We base our system on an enclave abstraction (i.e., a one-to-one
mapping between TEE, process, and variant) to provide high level
of isolation with a minimal trust assumption. We highlight that
this abstraction is not specific to process-based TEEs but is also
applicable to VM-based TEEs [60]. In MVTEE, we currently support
SGX and TDX, with the potential to extend to other CPU TEEs.
Monitoring architecture. There are different types of MVX mon-
itoring designs as illustrated in Figure 4, each offering distinct
security-performance trade-offs. In MVTEE, we adopt a Cross-
Process User-Space (CP/US) monitor design where the MVX mon-
itor operates within a separate TEE backed by a TEE OS with
minimal attack surfaces and a very low TCB.

. . IP/CP: In/Cross Process
Variant Variant,
US/KS: User/Kernel Space
IP/US IP/US i CPmS
% shared memory
{2} Monitor
Kemel‘ t Untrusted

Figure 4: Monitor Architecture Design Choices

This design is driven by two main considerations: (i) under TEE’s
threat model, the privileged kernel is outside the TCB, rendering
Kernel-Space (KS) monitoring inapplicable; (ii) targeting potential
vulnerabilities within the in-process software stack, a cross-process
monitor provides better security and fault isolation, ensuring that
a compromised variant cannot compromise the monitor. This archi-
tecture also naturally supports execution in a distributed setting.
We rely on cryptographically protected secure channels established
after successful attestation for monitor-variant interactions.
Two-stage variant bootstrap. To align with TEE’s threat model,
where MVX details must remain confidential from untrusted parties
(e.g., orchestrators responsible for resource management in stan-
dard cloud deployments), we introduce a two-stage variant boot-
strap design. Initially, each variant TEE is assigned an init-variant,

Middleware 25, December 15-19, 2025, Nashville, TN, USA

similar to the concept of Kubernetes init containers [7]. As illus-
trated in Figure 5, this design segregates files and settings into public
and private parts. The public part comprises the init-variant and
its settings, while the private part hosts the main variant-specific
files and settings in encrypted form. This setup ensures that un-
trusted orchestrators are only involved in the initial placement
of variant TEE containers, each loaded with an init-variant and
public settings. Following successful attestation, each init-variant
receives a variant-specific key and a variant identifier, allowing for
the decryption and setup of main variant-specific files and settings.
B n

.

* teeos.entrypoint * teeos.entrypoint
=“{init_binary}” =“{main_binary}”
* fs.mounts="...” « fs.mounts="...”
* tee.trusted_files * tee.encrypted.files|
=“{pub_file_path}” ="{priv_file_path}”
. b .

@ init-variant @ main-variant

Figure 5: Two-Stage Variant Bootstrap Example

We observe that the two stages necessitate distinct environments
and resources for execution. In particular, their security settings
such as allowed files, environment variables, IOCTLs and system
calls (syscalls) can also differ. These settings that regulate applica-
tion execution are typically specified in a specialized manifest file
provided by the TEE OS. This file is loaded, parsed and enforced
at its boot time. Therefore, we require the support of two-stage
manifests, where a different second-stage manifest can be installed
post launch. We allow access to this installation interface via TEE
OS’s customized interfaces. To prevent abuse, we further require
one-time installation: once setup, it is locked, unmodifiable, and
not accessible by the main variant executing in the second stage.

The stage transition is designed to be one-way, triggered by the
first exec() syscall from the init-variant. The newly installed man-
ifest is then enforced and supersedes any prior settings following
this transition. This phased lifecycle design not only simplifies the
init-variant’s functionality, reducing its TCB and attack surfaces,
but also minimizes the attack surface for each specific variant by
limiting its environment and resources strictly to necessities.
Attestable variant initialization and updates. Variants are dy-
namically initialized following the protocol depicted in Figure 6.
Initially, the orchestrator schedules the monitor TEE and a set of
variant TEEs (starting with init-variant) per the model owner’s
request, where they await initialization commands @. The model
owner first verifies the authenticity and integrity of the monitor
TEE through a challenge-response attestation based on a hardware-
signed TEE report, and establishes a secure connection with it @.
An MVX configuration is then provisioned to the monitor ®. To pro-
tect against potential replay attacks, a nonce is used. Based on the
MVX specifications, a selection of partition variants is made (either
deterministically or randomly) from the pre-established pool and
maintained within the monitor @. Following this, the monitor and
variants setup secure channels through RA-TLS [54] implemented
at the socket level. It then assigns a variant-specific key and its
corresponding variant identifier to each variant ®. The init-variant
installs this key into the TEE OS for future decryption, fetches the
encrypted variant-specific manifest and files, and establishes secure
connections with adjacent partitions if required. The TEE OS con-
figures and locks the manifest, attesting its successful installation

Middleware 25, December 15-19, 2025, Nashville, TN, USA

by sending evidence back to the monitor ®. Upon receipt of this
confirmation, the monitor verifies and binds each connection with
the respective variant and meta data @. Finally, the initialization
results, along with the nonce, are sent back to the model owner
for verification ®. During inference runtime, users perform a com-
bined attestation of all TEEs through the monitor, then provision
their secret inputs for subsequent execution, which is carried out
through the partitioned variants in a pipelined manner.

0 -

2-Stage Variant Monitor

@
WaitInit response(TEE_report)

Model Owner
challenge

@
Verify
Init/Update(MVX_conf, nonce) @ TEE_report

> Init(MVX_conf) @

init-variant

« Install key, (socket-level) RA-TLS

« Fetch files
* Install manifest
 Establish secure< o
connections ® tInlIllVaTl;mtResult + Verify install_evidence
Waitinput (install_evidence, nonce) >~ Set/Update variant binding
@

Initvariant: key,, id,, nonce [®

<sockfd, meta, variant_hash:

hit/UpdateResult (results, nonce) @

Verify results
Verify nonce

®

Figure 6: Workflow of Variant Initialization/Updates

We support full and partial variant updates, following similar
workflows to initialization. Full updates reshuffle partition sets and
reconstruct bindings, while partial updates replace or scale certain
variants, updating bindings in an appending-only way for audit-
ing purposes. While reusing TEEs could reduce overhead, we opt
against it in updates due to (i) potential security risks from incom-
plete and unsound software-level cleanups, which can open up
new attack surfaces and contradict our security-first principle, and
(ii) updates may include changes to model partitions or runtimes,
making the associated loading costs unavoidable.

Selective MVX. In practice, not all parts within a trained model
requires protection. For instance, many modern ML models utilize
transfer learning [111], which is cost-effective and relies on smaller
datasets. Typically, these models begin with a publicly available
trained model from repositories like Huggingface and are fine-
tuned by retraining certain final layers or by partially altering the
model. Consequently, only a subset of layers — those that contain
sensitive information — need to be protected. Similarly, different
operators, parameters, or instructions show varied susceptibility
to faults [38, 55, 70, 73, 75]. Based on this observation, we have
designed selective MVX to focus on hardening the partitions most
susceptible to threats while offering flexibility that can reduce the
resource waste and overhead associated with static full replication.
Specifically, we support vertical scaling by allowing certain parti-
tions to activate MVX, and horizontal scaling by controlling the
number of variants per MVX-enabled partition. These can be con-
figured to adapt to dynamic online environments, to meet varying
security, Quality of Service (QoS), or resource demands.

Execution model. Variant TEEs are organized by the monitor into
a DAG that mirrors the original model topology, processing private
user data in a pipelined manner. Specifically, sequential execution
occurs when data is processed linearly, with each batch complet-
ing all partition stages before the next batch begins. Conversely,

Kailun Qin and Dawu Gu

pipelined execution involves processing batch streams simulta-
neously, with each pipeline stage handling a different batch. We
intentionally avoid installing all or multiple partitions within the
same variant TEE for enhanced security and isolation, preventing
checkpoint bypass if a variant has already been compromised. The
monitor initially dispatches identical user inputs to variants in the
first partition for inference and gathers their intermediate results.

For efficient execution, we propose a slow-fast path design as
illustrated in Figure 7. With a slow path, the monitor suspends
at designated checkpoints to evaluate the variant outputs against
predefined rules and employs a voting strategy to decide on further
actions. We use criteria-based consistency checks with thresholds
and different metrics (§5.2) to differentiate attacks from benign
divergences. This allows for evaluation based on variant-specific
characteristics that may result from diversification or inference
variability. Specifically, we apply relevant consistency metrics (e.g.,
similarity- or error-based measures) to variant pairs and adjust
thresholds based on variant noise levels to balance the precision
and recall of attack identification in the case of divergences. After
a successful evaluation, it will select and replicate the intermediate
results, then forward them to the subsequent partition variants.
The fast path, on the other hand, allows outputs to directly fall
through to the next partition variants. By default, MVTEE operates
in a hybrid mode. Under selective MVX, it automatically activates
the slow path when multiple variants are applied per partition and
switches to the fast path when a single variant is used. Furthermore,
all inter-TEE data communications are encrypted and authenticated
with unique sequence numbers for freshness, and are preferably
oblivious to avoid timing side channels.

FAST Path input —D—’:’—D—' output
sLowpath input —>[_ |+ > output

check check check

MVTEE Default

check :‘In:'(’k if unt
Figure 7: Slow-Fast Path Design

In line with our CP/US architecture, MVTEE implements cross-
process voting. Different voting mechanisms imply varying levels
of agreement, impacting detection reliability, with panel sizes also
involving reliability/resource trade-offs. We default to a unanimous
consent strategy to prioritize security and reliability, but MVTEE is
flexible in terms of voting algorithms. Under this strategy, we allow
both synchronous and asynchronous execution modes:

e Sync mode: The monitor pauses at specific checkpoints to evalu-
ate all variant outputs against predefined rules. Any instance of
dissent prompts, the monitor performs an immediate response
to adjust the execution.

e Async Mode: Given the execution time can vary significantly
among variants in practice, we design a cross-validation strategy
to mitigate the impact of delays in variant execution, as demon-
strated in Figure 8. The pipeline is allowed to proceed once a
majority consensus is reached at the checkpoints. When results
from delayed variants are received, and if any dissent is noted, we
react to the execution at the earliest next checkpoint. This mode
is inherently inapplicable for full MVX without partitioning.

MVTEE: Multi-Variant Trusted Execution for Secure Model Inference

A

SYNC input — output

exec time o terminate time

I time time

— —
ASYNC input output

exec time terminate time

A time

time

success fail

Figure 8: Execution in Sync/Async Mode

5 Implementation

Our prototype consists of 3.6K Lines of Code (LoC) of Python and
1.7K LoC of C. It is composed of two main parts: the offline ML
MVX tooling and the runtime TEE MVX system. The runtime of
MVTEE is extended based on GRAMINE-SGX/TDX (v1.7) [60, 112].

5.1 Offline ML MVX Tool

We develop an offline ML MVX tool to streamline and automate
the process of model partitioning and the generation of variants
for each partition, as presented in Figure 2. This tool offers several
modules: model inspection, model partitioning, and the construc-
tion of partition variants. The inputs required for this tool are: (i)
the target model file for secure inference, (ii) configuration files
that detail model partitioning settings and variant specifications,
and (iii) base GRAMINE manifest files for restricting the environ-
ment and resources. The final outputs include partition variants
with their respective GRAMINE manifests in encrypted form. Be-
sides, we generate monitor and base variant container images that
package the GRAMINE TEE OS, TEE-related files, along with the
corresponding public executables and manifests. For real-world
deployments, declarative configurations can be integrated into the
Security Development Lifecycle for diversification customization,
and auto variant correctness verification can be added into CI/CD.
Model inspection and partition modules. These modules are
built on ONNX. Through model inspection, we collect information
such as IR version, graph inputs/outputs, initializers, and nodes,
including their indices and detailed metadata. MVTEE’s partition
module currently offers two modes: manual and automatic. In man-
ual mode, the module functions as a graph slicer, generating graph
slices based on the specified node names or indices. This mode is
practical for model owners with expert knowledge on how to create
effective checkpoints (e.g., they have prior knowledge on which op-
erators are more sensitive). Automatic partitioning implements the
random contraction algorithm. It offers a customizable weight func-
tion to define formalized soft preferences and a constraint function
to specify hard requirements. By default, the module is configured
to prioritize balanced partitions in terms of size to trade-off between
security and performance. With additional information, such as the
security/safety sensitivity of nodes, the module can be extended
to prioritize other objectives. Specifically, users set: (i) the target
number of partition sets, (ii) the number of partitions/checkpoints
per set, and (iii) customized preferences and constraints settings to
obtain randomized model partitions. To speed up the process, our
tool also supports parallel graph partitioning.

Variant construction module. This module first supports a set
of ONNX to ONNX transformations/optimizations elaborated in

Middleware 25, December 15-19, 2025, Nashville, TN, USA

§4.2 to achieve model graph-level diversification on the partitioned
subgraphs. For diversification at the inference instance level, we
generate variant-specific GRAMINE manifests and bootstrap scripts
based on variant configurations in JSON format. This configura-
tion specifies the runtime, dependencies and runtime-specific di-
versification strategies (e.g., applied compiler passes, third-party
toolchain flags, and the type of TVM executor in the case of a TVM
runtime). Other diversification strategies such as N-versioning,
conventional compiler-assisted diversification, or a combination
with system-level diversification settings can be applied indepen-
dently. With GRamINE, MVTEE supports various inference runtimes
on x86-64 CPU TEEs, including ORT, TVM, OpenVINO, Pytorch,
TensorFlow, and TensorFlow Lite. As the final step, we use the
gramine-sgx-pf-crypt utility to encrypt the manifest, necessary
files, and dependencies using a variant-specific key.

5.2 Runtime TEE MVX System

Enhancements to GRAMINE. We first extend GRAMINE to support
the two-stage manifests, which can be enabled via a newly added
manifest option. Specifically, we allow the one-time installation of
a second-stage manifest via pseudo file system interfaces. Not all
features in the standard GRAMINE manifest are supported for the
second-stage; MVTEE focuses on the security-related ones, such as
trusted/encrypted files settings and syscall restrictions. The new
manifest takes effect on the subsequent exec() syscall. It mandates
execution solely from GRAMINE’s encrypted files, as per the design
of init-variant, and prohibits any key manipulation in the second
stage, ensuring all necessary configurations are installed by the
init-variant prior to main variant execution. Upon exec(), we re-
set the status as thoroughly as possible before switching to the
second-stage manifest to ensure that the two stages are completely
independent. This includes zeroing out all applicable virtual mem-
ory areas, closing unrelated file descriptors, resetting the program
break, clearing thread-local storage, removing custom signal han-
dlers, unlinking ELF objects, and unloading any dynamically loaded
libraries or ELF objects in use of the init-variant stage.

For enhanced security, we enforce GRAMINE’s code as RX-only
pages, using the new page permission management instructions
provided by the Enclave Dynamic Memory Management feature
of SGX2 [81]. Besides, rather than depending on the RA-TLS li-
brary to establish secure connections, we enhance GRAMINE to
support socket-level RA-TLS and data encryption. This lower-level
enforcement helps prevent potential application-level bypasses and
ensures that all data transmitted over the network is consistently
authenticated and encrypted (with AES-GCM-256). Additionally,
we extend GRAMINE to include syscall restrictions, further reducing
the runtime attack surface across separate variant execution stages.
Monitor and init-variant. The MVTEE runtime is implemented
following the CP/US design, where the monitor and the variants
operate in separate TEEs based on the enhanced GRAMINE. They can
be deployed either in a co-located or distributed setting. For TCB
and attack surface minimization, we only implement the necessary
functionalities in the monitor and init-variant. This also reduces the
extra Enclave Page Cache (EPC) consumption, and with the support
of dynamic memory management provided in TEE backends, the
TEE initialization overhead can be minimized.

Middleware 25, December 15-19, 2025, Nashville, TN, USA

We implement the monitor-side of the dynamic variant initial-
ization and update protocol. The monitor maintains MVX settings
and manages all variants’ attestation, key distribution and binding
updates. We also implement the input distribution, checkpoint syn-
chronization and output replication within the monitor following
the design detailed in §4.3. To assess the consistency of outputs
from different partition variants, we implement configurable check-
ing based on criteria such as cosine similarity, mean squared error,
maximum absolute difference, and np. testing.assert_allclose
(with predefined absolute and relative tolerances). Moreover, we
implement the designed efficiency optimizations including selective
MVX, slow-fast path and asynchronous cross-validation execution.

The init-variant is implemented following the two-stage boot-
strap design. The core functionality of init-variant comprises the
variant-side of the init/update protocol, leveraging the extended
GRAMINE’s one-time manifest installation for the second stage.

6 Evaluation

In this section, we evaluate the MVTEE system’s performance to
assess its practicality. In addition, we conduct a security analysis of
MVTEE’s attack surfaces, discussing the applied mitigations.

6.1 Experimental Setup

Testbed. Our experiments are conducted on dual-socket platforms
with Intel Xeon Gold 6354 CPUs (36 cores per socket), 378GB of
RAM, 128GB of SGX EPC and 10 Gbps Ethernet, running Ubuntu
22.04. We use numactl with cpunodebind and membind to bind
processes to a single Non-Uniform Memory Access (NUMA) domain
for consistent results. We perform warmup runs and repeat trials
to minimize measurement noise, with average values reported.
Models. We evaluate the pre-trained DNN models: EfficientNet-b7,
GoogleNet, Innception V3, MnasNet, MobileNet V3, ResNet-152
and ResNet-50. We use 32-bit floating-point precision with a batch
size of 1 and input data size of 3x224x224 by default.

Partitions. We generate the partitions using our random-balanced
algorithm. They are tested for correctness before evaluation.
Variants. To evaluate the fundamental performance of MVTEE and
the impact of selective MVX, we apply identical/replicated variants
running on ONNX runtime (v1.18.1) to minimize execution time
variations among variants. For real setup performance analysis, we
build variants run on either ONNX runtime or TVM (v0.15.0) graph
executor, implementing multi-level diversification (§4.2).
Execution. We measure throughput and end-to-end latency under
both sequential and pipelined execution. Unless otherwise noted,

Higher is better 1 Inference absolute throughput

400 =3 original
EZ3 seq (3 parts)
£ seq (5 parts)
B seq (7 parts)
=3 pipeline (3 parts)
2 =1 pipeline (5 parts)
= pipeline (7 parts)

w
a
=]
+534.8%

2
&
2
2

w
o
S

N
a
=)

Throughput (img/sec)
N
wu o
S 3

=
o
S

a
=)

P [P
EfficientNet-b7 GoogleNet

Kailun Qin and Dawu Gu

all inter-variant and variant-monitor data is encrypted (with AES-
GCM-256) and transferred via TCP/IP sockets. We apply MVTEE’s
hybrid execution mode by default (Figure 7). Asynchronous execu-
tion is activated only in real setup evaluations, addressing execution
time differences among different variants.

Lower is better 4 Encryption and checkpoint overhead

=1 Plaintext + fast (seq)
EEA Encrypt overhead (seq)
I Checkpoint overhead (seq)
[Plaintext + fast (pipeline)
EZA Encrypt overhead (pipeline) =]
E==1 Checkpoint overhead (pipeline)

w
o
t=}

w
1=
k=3

N
a
=3

-
o
=3

Avg end-to-end latency (ms)
= N
S S
8 8

o
=]

0 | = | |
EfficientNet-b7 GoogleNet Incept. V3 MnasNet MobileNet V3 ResNet-152 ResNet-50
Note: Percentages above bars represent the proportion of encrypt + checkpoint overhead.

Figure 10: Encryption and Checkpoint Overheads
6.2 Fundamental Performance of MVTEE

We first evaluate the performance impact of our random-balanced
partition strategy with different numbers of partitions. Results de-
picted in Figure 9 show performance across different models on a
full fast path. We establish the performance of the original model as
our baseline. In sequential execution, the throughput of inference
decreases by 1.7% to 62.2% compared to the baseline, worsening
as the number of partitions increases. Correspondingly, latency
rises by 1.7% to 164.3%. However, in pipelined execution, MVTEE
achieves throughputs 1.7x to 5.4x higher than the baseline and
reduces latency by 63.4% to 84.4%. Additional partitions could pos-
sibly bring further performance benefits, since they form a longer
processing pipeline and increase parallelism. This indicates that
while checkpoint insertion via partitioning introduces overheads,
the resulting pipeline opportunities can successfully hide them
through compute-communication overlapping.

Next, we evaluate the encryption and checkpointing overheads
stemming from MVTEE’s cross-process monitoring architecture
and its specific threat model. Our experiments use a 5-partition
setup with no encryption and a full fast path as the baseline. The
checkpointing overhead is measured on a full slow path. Figure 10
shows that encryption and checkpointing contributed to an overall
overhead of 13.6% to 50.7% in sequential execution and an even
higher proportion in pipelined execution - ranging from 50.4%
to 93.6%. These overheads are more impactful on smaller models
such as MobileNet and MnasNet. In particular, checkpointing is a
major source of overhead due to additional variant-monitor data

Lower is better | Inference absolute latency

=1 original
EZ3 seq (3 parts)
= seq (5 parts)
EE seq (7 parts)
=3 pipeline (3 parts)
3 pipeline (5 parts)
== pipeline (7 parts)

IS
=)
S

2
<
=
3
<

w
o
S

W
a2

N
=3
S

Avg end-to-end latency (ms)
S
S

)
.
%
.
7
%

EfficientNet-b7 GoogleNet

Figure 9: Performance Impact of Random-Balanced Partitioning

MVTEE: Multi-Variant Trusted Execution for Secure Model Inference

Higher is better 1 _Inference throughput at diff #variants

7 3 original
22 seq (1 var)

E=3 seq (3 vars)

EE seq (5 vars)

=3 pipeline (1 var)
© =3 pipeline (3 vars)
<, =3 pipeline (5 vars)

o

<
i

«

IS
3.65
.7

Normalized throughput
w

N

-

gz

’E" i
ResNet-50

0 £l i = E
EfficientNet-b7 GoogleNet Incept. V3 bileNet V3 ResNet-152

i

Higher is better tInference throughput at diff #MVX parts

5{ C=3 original
ZA seq (1 MVX part)

=3 seq (3 MVX parts)

EEH seq (5 MVX parts)

3 pipeline (1 MVX part)
=3 pipeline (3 MVX parts)
=1 pipeline (5 MVX parts) &

IS

o
~

w

0 <
Iy 0
iy o

~
Ll

Normalized throughput
N

-

/&

7%z
0 i
EfficientNet-b7 GoogleNet Incept. V3

MnasNet MobileNet V3 ResNet-152 ResNet-50

Figure 11: Normalized Performance of Horizontal Variant Scaling Using Selective MVX

Middleware 25, December 15-19, 2025, Nashville, TN, USA

Lower is better ¢ Inference latency at diff #variants

== original
3.01 223 seq (1van)
3 seq (3 vars)
B seq (5 vars) -
=1 pipeline (1var) ~ m
== pipeline (3 vars)
2.0{ E=3 pipeline (5 vars)

Normalized latency

0.0

EfficientNet-b7 GoogleNet Incept. V3 MnasNet MobileNet V3 ResNet-152 ResNet-50

Lower is better ¢ _Inference latency at diff #MVX parts

=31 original
5 B2 seq (1 MVX part)
=5 seq (3 MVX parts)
EER seq (5 MVX parts)
=3 pipeline (1 MVX part)
=3 pipeline (3 MVX parts) _,
=3 pipeline (5 MVX parts) ?

~

w

Normalized latency
~N

-

0 . i
EfficientNet-b7 GoogleNet Incept. V3 MnasNet MobileNet V3 ResNet-152 ResNet-50

Figure 12: Normalized Performance of Vertical Variant Scaling Using Selective MVX

transmissions and cryptographic operations, while the verification
computation typically completes quickly enough. However, we
highlight that through MVTEE’s fast path design, the overall over-
head can be mitigated by up to 28.3% in sequential execution and
up to 86.5% in pipelined execution. Additionally, while encryption
overhead is inevitable, it can be optimized through more efficient
cryptographic algorithms and implementations, or by limiting the
size of data transferred between partitions.

6.3 Performance of Selective MVX

We analyze the performance of selective MVX by examining vertical
and horizontal scaling of MVX configurations. We keep the original
model performance as our baseline.

We evaluate horizontal scaling in a 5-partition setup, specifically
scaling the 3 partition with varying numbers (1, 3, and 5) of vari-
ants. Figure 11 illustrates the normalized performance outcomes. In
sequential execution, the overhead from horizontal variant scaling
is negligible compared to the partitioning-caused overhead (the dif-
ference between seq (1 var) and original). In pipelined execution,
the initial MVX activation (from 1 to 3 variants) imposes noticeable
overheads across models. Interestingly, adding more variants (from
3 to 5) has a lesser impact. We attribute this to the transition from
the fast path to the slow path in the MVX-enabled partition, which
requires additional synchronization and consistency checks. It can
further create bottlenecks in the MVX-enabled pipeline stage, caus-
ing subsequent stages to wait and slow down the overall pipeline.
Fine-grained pipeline optimizations could potentially alleviate this
issue. Note that all pipelined executions significantly outperform
the original models, achieving at least 1.6x throughput and less
than 0.7x latency across all scaling settings.

Figure 12 presents the normalized performance statistics for ver-
tical variant scaling, where we test varying numbers of partitions to
enable MVX, each running 3 variants. Specifically, we enable MVX
on the 3" partition for 1-MVX configuration and on the 34, 4th and

5th partitions for a 3-MVX configuration. In sequential execution,

throughput is maintained at a minimum of 0.4x and latency below
2.5x for both 1- and 3-MVX-enabled partitions. However, expanding
to a full 5-MVX configuration results in a significant performance
reduction, with throughput dropping to about 0.3x and latency
exceeding 3x for most models. In pipelined execution, the perfor-
mance decline is mitigated by concurrent processing benefits, in
particular in the case of 1- and 3-MVX-enabled partitions. In these
configurations, we highlight that the pipelined execution generally
outperforms the original models. Specifically, with 1-MVX-enabled
partition, we achieve throughput ranged from 1.7x to 3.8x and av-
erage latency from 0.3x to 0.6x; with 3-MVX-enabled partitions,
throughput is 0.9x to 3.3x and latency from 0.3x to 1.2x. However,
retaining the original performance under full MVX pipelined exe-
cution is challenging, with throughput varying between 0.2x and
1.0x and latency ranging from 1.0x to 4.1x. This is attributed to
early synchronization in the full MVX setup, which stalls pipelines,
delays data progression to subsequent stages, and reduces over-
all parallelism. We consider this as a lesser concern in general as
this setup is specifically reserved for scenarios where exhaustive
hardening is prioritized over performance considerations.

6.4 Performance of MVTEE in Real Setup

We test variants running on ORT or TVM graph executor, with
diversification at different levels to reflect real-world deployments.

First, we assess our asynchronous cross-validation execution
mode in a 5-partition MVTEE setup, activating MVX on the 224 and
3rd partitions, each with 3 variants. In this test, we specifically apply
a TVM variant with complex diversification for targeted security
checks, which leads to lagging performance. Figure 13 highlights
that, compared to synchronous execution, our asynchronous ap-
proach achieves a throughput increase of 5.2% to 34.2% in sequential
execution and 3.1% to 17.8% in pipelined execution. It also results in
an average latency reduction of 5% to 25.6% in sequential execution
and 3.1% to 15.2% in pipelined execution.

Middleware 25, December 15-19, 2025, Nashville, TN, USA

Higher is better 1 Sync/async inference absolute throughput

80 N £Z2 seq (sync)
& =3 seq (async)

? =1 pipeline (sync)
=1 pipeline (async)

~
=)

o
=)

o
=)

N
S

w
o

Throughput (img/sec)

baseline
+14.2%

N
o
baseline
S baseline
baseline
4+5.2%
baseline
+5.5%

+6.1%
Nbaseline

Nbaseline
F+17.3%
N\
baseline
+34.2%

=
o

baseline

+28.7%

EfficientNet-b7 GoogleNet Incept. V3 MnasNet MobileNet V3 ResNet-152 ResNet-50

a
@

Figure 13: Performance of Asynchronous Cross-validation Execution Mode

Higher is better tInference absolute throughput (real setup)

B = original
120 E EZA seq (1 MVX part)
+ seq (3 MVX parts)
'g_.; 100 3 pipeline (1 MVX part)
o 1 pipeline (3 MVX parts)
o
£ 80
z
3
2 60
5
2
3
£ 40 <
= in
¢ B
Bggl B

MnasNet MobileNet V3 ResNet-152 ResNet-50

Kailun Qin and Dawu Gu

Lower is better ¢ Sync/async inference absolute latency

EZA seq (sync)
B3 seq (async)
=1 pipeline (sync)
1 pipeline (async)

o
o
S

baseline

I
=3
S

S baseline

baseline

300

12.0%

baseline

Avg end-to-end latency (ms)

baseline

NNANANUNNNANNNN

7
%
z

S baseline
NAN/
I RHE]

£
i
2
=
B

EfficientNet-b7 GoogleNet Incept. V3 MnasNet MobileNet V3 ResNet-152 ResNet-50

Lower is better ¢ Inference absolute latency (real setup)

=1 original 4
FZA seq (1 MVX part) q
E=3 seq (3 MVX parts) +
1 pipeline (1 MVX part) :
3 pipeline (3 MVX parts)

ms

400

w
=3
S
161.2%

+128.5%

N
=3
S

Avg end-to-end latency
I
S

o
H
8
8

PR +142.9%

N +103.2%

EfficientNet-b7 GoogleNet Incept. V3 MnasNet MobileNet V3 ResNet-152 ResNet-50

Figure 14: MVTEE Performance in Real-World Setup

Further, we evaluate the real-world performance of MVTEE
deployment against the original inference baseline. We enable 3-
variant MVX execution on one partition (the 3™ partition) and
across three partitions (the 3rd, 4th, and 5th partitions), with by
default asynchronous execution. Figure 14 illustrates that in se-
quential execution, throughput is sustained at 0.4x to 0.8x for 1
MVX partition and 0.4x to 0.6x for 3 MVX partitions. Latency over-
head is recorded at 18.7% to 128.5% for 1 MVX partition and 64.4%
to 176% for 3 MVX partitions. Given MVTEE’s focus on security
and reliability, this performance level is considered acceptable. In
pipelined execution, performance improvements are observed: a
throughput increase of 82.4% to 209.4% and a latency reduction of
45.1% to 67.7% when 1 MVX partition is selectively activated; and
an 85.5% to 110.8% throughput with latency between -9.7% to 17%
is maintained when 3 MVX partitions are enabled, covering the
majority of the model. Since (i) not all parts of a model necessitate
hardening and (ii) mainstream managed cloud inference platforms
like Amazon SageMaker and Azure Al services provide built-in
support for streaming inference targeting real-time scenarios and
continuous large-volume data analysis, we highlight the practi-
cality of MVTEE'’s pipelined execution. We can achieve superior
performance by hardening only the most vulnerable subset of a
model and maintain comparable performance when the majority
of partitions are hardened under MVX.

6.5 Security Analysis

MVTEE comprises the following core components at runtime: mon-
itor, init-variant, and variant, each linked to a manifest and all
running on the TEE OS. We first describe the security properties
that these components must uphold: (i) the monitor, init-variant,
and TEE OS code must be integrity-protected, (ii) the code and data
(including manifests) of the variant and the internal state of TEE OS
must be confidentiality- and integrity-protected, (iii) all network
I/O must be confidentiality- and integrity-protected, (iv) file I/O
must be integrity-protected for the monitor and init-variant, and

confidentiality-protected for the variant, (v) the TEE OS must not
be vulnerable to privileged attacks, (vi) the monitor and init-variant
must be hardened against software and fault vulnerabilities, (vii)
tampering with all manifest files must be detectable, (viii) the chain
of trust of TEE attestation must reflect all loaded components and
remain immutable. In the following, we systematically study the
possible attack vectors and explain their mitigations.

Software vulnerabilities in variants. Attackers with access to
public APIs can send maliciously-crafted inputs to exploit memory-
safety or runtime errors in ML frameworks and libraries. Our em-
pirical analysis of various TensorFlow CVEs shows that MVTEE
can mitigate such attacks through the variants exemplified in Table
1. Variants generated from inference-instance-level transforma-
tions and traditional MVX diversification are the most effective
against these attacks. Certain model-graph-level transformations,
e.g., equivalent operator replacement, can also help by nullifying
vulnerabilities specific to certain operator implementations, but we
don’t highlight this as models are mathematical representations
and not directly tied to software vulnerabilities. Intuitively, variants
seem unnecessary since existing defenses or their combinations
can also mitigate these vulnerabilities. However, a single defense
is often inadequate due to attack diversity, while trivial combined
protection on one target is prohibitively expensive and often con-
flicting [133]. MVTEE is orthogonal and can be applied on top to
effectively detect broad classes of attacks.

Faults in variants. Attackers can induce runtime faults to ML infer-
ence locally or remotely (e.g., through a co-located container which
has access to vulnerable interfaces). For model-targeted attacks
(e.g., on operators, weights), graph-level transformations can alter
graph-level properties and thus change fault susceptibility, mak-
ing targeted faults unreliable or invalid. Existing algorithm-level
countermeasures can also be applied. To counter faults injected
at the ML framework/library level, inference-instance-level trans-
formations can be used. For instance, the FrameFlip attack targets
fault-vulnerable bits in the OpenBLAS [13] linear algebra backend,

MVTEE: Multi-Variant Trusted Execution for Secure Model Inference

Table 1: TensorFlow Vulnerabilities and Defending Variants.
(OOB: Out of Bound Read/Write, UNP: Uninitialized/Null Pointers,
FPE: Floating Point Exception, IO: Integer Overflow,

UAF: Use After Free, ACF: Assertion Check Failures, RT: Runtime)

Type Example CVE Impact Variants e.g.
CVE-2021-41226 DoS Different RT
OOB CVE-2022-41883 Data corruption Bounds check
CVE-2022-41900 R/W primitives Sanitizers
CVE-2023-25668 Code execution ~ ASLR
UNP CVE-2022-21739 DoS Different RT
CVE-2023-25672 Incorrect results Sanitizers
DoS Different RT
FPE CVE-2022-21725 Error handling
Incorrect results .
Compiler
10 CVE-2022-21727 thSa corruption ?;iii;::sRT
CVE-2022-21733 up :
Incorrect results Compiler
DoS .
UAF CVE-2021-37652 Data corruption lef.er.ent RT
. Sanitizers
Code execution
ACF CVE-2022-35935 DoS Different RT
Error handling

but is ineffective against a variant using a different BLAS imple-
mentation (e.g., Eigen [2] or Intel MKL [124]). Certain fault attacks
are only possible on specific TEE hardware [137]. MVTEE supports
TEE-level variants to help mitigate these attacks.
Additional variant hardening. We harden the variants’ TEE
runtime/OS against privileged attacks, such as malicious exceptions
and signals [105], by cross-verifying host-reported signals against
TEE-reported exceptions. The TEE OS maintains the state of the
application’s requests and proactively cross-checks, e.g., the opened
files and the statue of network connections. We further shield pipes,
network and file system I/O by implementing automatic encryption
and decryption at the TEE OS level to ensure all data leaving the
TEE boundary remains confidential. This guarantees that only the
monitor and the specific variant itself, which hold the decryption
key, can access the data. The variant manifest by default blocks
all command-line arguments and environment variables from the
untrusted host and only enables through a controlled allow-list
when necessary. It is impossible for attackers to abuse the variant
manifest installation feature at the application level, as we enforce
a one-time and one-way manifest installation by init-variant, and
the interface is disabled during the variant execution stage.
Attacks on init-variant and initialization/updates. MVTEE
monitor must perform attestation to establish trust in init-variant
before distributing any variant-specific keys and updating secure
bindings. TEE reports that include measurements of the entire soft-
ware stack of init-variant are sent to the monitor. Any discrepancies,
such as a malformed manifest or tempered code, can be detected
due to unexpected measurements. To defend replay attacks from
untrusted environments, we use a nonce check to ensure freshness.
Attackers may attempt to inspect the manifest and files of a
variant, but this would simply fail as they are encrypted with a
variant-specific key. Key rotation can be conducted on a regular
basis for proactive defense. Note that the variant-specific key acts
as a key derivation key for the TEE OS’s encrypted filesystem, while

Middleware 25, December 15-19, 2025, Nashville, TN, USA

actual file encryption uses one-time keys. Therefore, it results in
much less ciphertext compared to use it for direct data encryption.
This prolongs the time to reach NIST recommended key usage
thresholds and lessens the burden of key rotation.

The hashes of trusted files used by init-variant are generated
and stored in its manifest at build time. TEE OS verifies all opened
files in this set against their reference hashes at runtime. MVTEE’s
encrypted files can suffer from rollback/replay attacks [79], where
an attacker reverts files to an older state. We partially mitigate
this by maintaining freshness metadata at runtime but a complete
defense requires independent monotonic counters. Fork attacks [15]
occur when an attacker creates diverging instances of the same
variant. MVTEE mitigates this by disallowing reuse or migration,
with its monitor ensuring secure variant binding before execution.
Monitor security. The monitor acts as the trust anchor and is
designed with minimal attack surfaces and a very low TCB. The
monitor is also hardened against any untrusted inputs. It interacts
with model owners and variants, ensuring that variant initialization
and updates adhere to the protocol. Further, the distributed nature
of cross-process monitoring allows for independent hardening of
the minimalistic monitor. Instead of running in a large-memory TEE
(e.g., Intel SGX2 or TDX) that sacrifices hardware-level memory
integrity checks, the monitor can be hosted in a small integrity-
enhanced TEE (e.g., Intel SGX1, using Message Authentication Code
and an integrity tree) to mitigate RAM corruption and replacement
without incurring additional secure memory swapping overheads.

7 Related Work and Discussions
7.1 TEE-based Secure Model Inference

TEEs have been applied in secure model inference through two
primary methods. The first is comprehensive TEE-shielding, where
the entire model is secured within TEEs [58, 63, 78]. While this
maintains confidentiality and accuracy same as the original model,
it comes with performance penalties mainly due to EPC constraints.
To tackle this, previous studies have proposed using lightweight
models [94], reusing a shared memory pool for model weights and
pipelining loading for layered processing [53, 65, 74], as well as
through model partitioning [65, 66]. MVTEE also leverages model
partitioning, but with a distinct focus on security and reliability
through MVX. It requires randomized partitioning and prioritizes
balanced checkpoint insertion for effective early threat detection
and response. Besides, MVTEE aims to support newer TEEs like
Intel SGX2, Intel TDX, and AMD SEV with large secure memory
capacities, in which case limited secure memory is less of a concern.

A second method is TEE-shielded DNN partition, which places
only a portion of the DNN model within TEEs while offloading
the rest to non-TEEs (e.g., GPUs) for computational efficiency
[30, 41, 84, 102, 107]. Existing studies broadly assume that the
offloaded segments do not reveal critical private information of
models. Yet, this assumption has been challenged under practi-
cal threat models. Though a recent approach suggests partition-
before-training to deliver security equivalent to full TEE-shielding
[140], it does not apply to post-training models - the focus of MV-
TEE. MVTEE strives to offer baseline protection equivalent to full
TEE-shielding, even with selective MVX. MVTEE further considers
stronger threat model including software vulnerabilities and faults.

Middleware 25, December 15-19, 2025, Nashville, TN, USA

7.2 Defenses Against Relevant Attacks

Recent research has explored vulnerabilities in ML frameworks
and libraries, examining their security impacts, exploitability, root
causes, and suggesting remediation solutions [29, 42, 44, 56, 101,
139]. To counter memory corruptions within TEEs, one approach
is using memory-safe programming languages like Rust [4, 125]
or running in restricted WebAssembly sandboxes [3]. Additionally,
hardening techniques including ASLR [99], bounds checking [59],
fuzzing [21, 26] and symbolic execution [129] have been proposed.
MVTEE is orthogonal and can provide comprehensive protection
based on them. Moreover, research proposes Control-Flow Attesta-
tion [85] and provenance analysis [109] to detect runtime exploits,
addressing limitations in the built-in TEE attestation. Different from
these solutions, MVTEE not only detects anomalous executions but
also responds through termination, recovery, or updates.

To protect DNN models against faults, researchers have pro-
posed using hardware-level hardening [67] and model-level fault-
tolerance [37, 69] or fault detection [47, 68, 72, 73]. However, these
methods often suffer from limited detection capabilities — model-
level hardening fails to address faults induced at lower levels, e.g.,
within ML frameworks or libraries [70]. Some proposals suggest
relying on TEEs to protect DNNs from fault injections [70, 132],
but these can be broken by new types of attacks [86, 93, 108].
General defenses against TEE-targeted faults include hardware-
level mitigations [138], restricting access to vulnerable interfaces
[86], and software-based hardening [55]. MVTEE offers a generic
system-level defense which can be applied to existing TEEs with
minimal effort. With its distributed architecture, MVTEE can fully
leverage any available defenses by e.g., running variants on hard-
ware implemented with specific hardening or constructing variants
with software- or algorithm-level protection. Research shows that
neurons and weights in a DNN exhibit varying fault sensitivities
[38, 73, 75], and more generally, instructions can have different sus-
ceptibilities to faults and impacts on inference tasks [55, 70]. The
effectiveness of MVTEE’s selective MVX is based on this rationale.

7.3 MVX Design and Applications

A range of MVX system designs have been explored, with dis-
tinct choices on monitoring architectures and checkpoint strategies
[16, 28, 33, 40, 77, 97, 119, 120]. Researchers have also proposed
MVX systems using hardware features [57, 128], or running in a
distributed setting [96, 121]. MVTEE is specifically designed for
TEEs. To our knowledge, no TEE-based MVX design has been pro-
posed. We adopt cross-process monitoring and checkpointing on
outputs to align with our design goals. In particular, model inference
is typically multithreaded where non-deterministic scheduling can
complicate syscall-level synchronization and cross-checks [118].
MVTEE uses output-level checkpointing, enabling multithreaded
execution without implementing complex synchronization, which
also contributes to minimized TCB and reduced overhead. Other
monitoring solutions (e.g., in-process [134] or hybrid [119]) and
checkpointing options (e.g., on syscalls [45, 92, 135]) can be adapted
to MVTEE, but this involves non-trivial effort to conform to the
TEE threat model and its peculiarities.

Research on variant generation implements diversification at
different stages of the software lifecycle, including development,

Kailun Qin and Dawu Gu

compilation, linking, installation, loading, and execution [19, 61,
110, 130]. Some researchers also suggest using heterogeneous ABIs
or ISAs [123, 127]. MVX has been proposed to harden user-space
applications [31], OS kernels [90], cloud microservices [32], and in
edge scenarios [20]. MVTEE aims to apply MVX in DNN inference,
an area less covered by prior research. It is designed with ML-native
characteristics in mind, particularly in its variant generation.
Resource overhead is a known MVX trade-off, providing more
comprehensive protection at the cost of increased resource usage.
Compared to the same level of single-target combined protection,
MVX trades resource for execution time. Different MVX settings
result in varying security/performance/resource trade-offs. In MV-
TEE, we target the protection of critical inference services that
prioritize security and safety. Through selective MVX, we allow
replicating only the subset of models more susceptible to threats,
reducing the overheads of full static replication. Integrating MVTEE
into inherent cloud redundancy patterns like Kubernetes ReplicaS-
ets [8] or leveraging underutilized hardware on demand can further
mitigate costs. Selective and asynchronous execution are common
optimization mechanisms, also implemented in some other MVX
systems [122, 136]. MVTEE incorporates unique adaptations, such
as runtime variant initialization and updates, along with asynchro-
nous cross-validation designs, aligned with its specific objectives.

7.4 Future Work

MVTEE currently targets secure inference using CPU TEEs, which
are more accessible, widely deployed, and well-studied targets of
advanced attacks. Adapting MVTEE to domain-specific (xPU) TEEs
requires further evaluation and non-trivial porting efforts, which
we plan to work on. While this work focuses on DNNs, running
large Foundation Models within CPU TEEs is also practical, offer-
ing flexibility and cost-effectiveness. We may explore MVTEE’s
applicability to these models and address their specific challenges.
Additionally, investigating the trade-offs between security, per-
formance, and resource utilization introduced by different MVX
strategies is an interesting topic for future research.

8 Conclusion

Under a practical threat model, TEE-shielded model inference re-
mains susceptible to a variety of software vulnerabilities and faults,
which could break its security and reliability promises. We present
MVTEE, a TEE-based model inference system applying MVX for
elevated confidentiality and integrity guarantees. MVTEE lever-
ages model partitioning and the heterogeneous nature of the in-
ference stack to generate MVX checkpoints and variants. Based
on cross-process monitoring and two-stage variant bootstrapping,
MVTEE can securely run multiple, diversified inference variants
concurrently, enabling timely threat detection and response. With
efficiency optimizations including asynchronous selective execu-
tion, we show that MVTEE provides a practical deployment model
well-suited for security- and safety-critical model inference.

Acknowledgments

We thank our shepherd Dr. Davide Frey and the anonymous review-
ers for their helpful comments. This work was supported by Na-
tional Science and Technology Major Project (No. 2022ZD0120304).

MVTEE: Multi-Variant Trusted Execution for Secure Model Inference

References

(1]
[2]

(3]

[4]
(5]

(6]

(7]
(8]
(9]

[10

(11]

[12

(13]

[14

(15

[16]

(17]

oo
oS

)
£

S
=)

[25

[26

[27

[28

[29

2024. Amazon Elastic Inference. https://docs.aws.amazon.com/elastic-inference.
2024. Eigen: a C++ template library for linear algebra: matrices, vectors, numer-
ical solvers, and related algorithms. https://eigen.tuxfamily.org.

2024. Enarx: Confidential Computing with WebAssembly. https://github.com/
enarx/enarx.

2024. Fortanix EDP: Enclave Development Platform. https://edp.fortanix.com/.
2024. Google Tensorflow: Product details, threats and statistics. https://www.
cvedetails.com/product/53738/Google-Tensorflow.html.

2024. Intel® Trust Domain Extensions (Intel® TDX). https:
//www.intel.com/content/www/us/en/developer/articles/technical/intel-
trust-domainextensions.html.

2024. Kubernetes Init Containers.
workloads/pods/init-containers.
2024. Kubernetes ReplicaSet. https://kubernetes.io/docs/concepts/workloads/
controllers/replicaset.

2024. Model inference overview. https://cloud.google.com/bigquery/docs/
inference-overview.

2024. NVIDIA Confidential Computing. https://www.nvidia.com/en-us/data-
center/solutions/confidential-computing.

2024. ONNX: Open standard for machine learning interoperability. https:
//github.com/onnx/onnx.

2024. ONNX Runtime: cross-platform, high performance ML inferencing and
training accelerator. https://github.com/microsoft/onnxruntime.

2024. OpenBLAS: an optimized BLAS library based on GotoBLAS2 1.13 BSD
version. https://github.com/OpenMathLib/OpenBLAS.

Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,
Michaél Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-
rand, et al. 2019. Learning to optimize halide with tree search and random
programs. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1-12.

Fritz Alder, Arseny Kurnikov, Andrew Paverd, and N Asokan. 2018. Migrating
SGX enclaves with persistent state. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 195-206.

Emery D Berger and Benjamin G Zorn. 2006. DieHard: Probabilistic memory
safety for unsafe languages. Acm sigplan notices 41, 6 (2006), 158-168.

Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-
Reza Sadeghi. 2018. The Guard’s Dilemma: Efficient {Code-Reuse} Attacks
Against Intel {SGX}. In 27th USENIX Security Symposium (USENIX Security 18).
1213-1227.

Jakub Breier, Xiaolu Hou, Dirmanto Jap, Lei Ma, Shivam Bhasin, and Yang Liu.
2018. Practical fault attack on deep neural networks. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. 2204-2206.
Javier Cabrera Arteaga. 2022. Artificial Software Diversification for WebAssembly.
Ph.D. Dissertation. KTH Royal Institute of Technology.

Javier Cabrera Arteaga, Pierre Laperdrix, Martin Monperrus, and Benoit Baudry.
2022. Multi-variant Execution at the Edge. In Proceedings of the 9th ACM
Workshop on Moving Target Defense. 11-22.

Liheng Chen, Zheming Li, Zheyu Ma, Yuan Li, Baojian Chen, and Chao Zhang.
2024. EnclaveFuzz: Finding Vulnerabilities in SGX Applications. In NDSS.
Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated {End-to-End} optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
578-594.

Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to optimize
tensor programs. Advances in Neural Information Processing Systems 31 (2018).
Neophytos Christou, Di Jin, Vaggelis Atlidakis, Baishakhi Ray, and Vasileios P
Kemerlis. 2023. {IvySyn}: Automated Vulnerability Discovery in Deep Learning
Frameworks. In 32nd USENIX Security Symposium (USENIX Security 23). 2383~
2400.

Tobias Cloosters, Michael Rodler, and Lucas Davi. 2020. {TeeRex }: Discovery
and exploitation of memory corruption vulnerabilities in {SGX} enclaves. In
29th USENIX Security Symposium (USENIX Security 20). 841-858.

Tobias Cloosters, Johannes Willbold, Thorsten Holz, and Lucas Davi. 2022.
{SGXFuzz}: Efficiently synthesizing nested structures for {SGX} enclave
fuzzing. In 31st USENIX Security Symposium (USENIX Security 22). 3147-3164.
Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology
ePrint Archive (2016).

Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack
Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser. 2006. N-Variant
Systems: A Secretless Framework for Security through Diversity.. In USENIX
Security Symposium, Vol. 114. 114.

Zizhuang Deng, Guozhu Meng, Kai Chen, Tong Liu, Lu Xiang, and Chunyang
Chen. 2023. Differential Testing of Cross Deep Learning Framework { APIs}: Re-
vealing Inconsistencies and Vulnerabilities. In 32nd USENIX Security Symposium
(USENIX Security 23). 7393-7410.

https://kubernetes.io/docs/concepts/

[30]

[31

[32

[33

[34

[35

[36

[37

[38

[39

[40

[41]

[42

[43]

[44

[45

[46

[47

[48

[49

Middleware 25, December 15-19, 2025, Nashville, TN, USA

Tarek Elgamal and Klara Nahrstedt. 2020. Serdab: An IoT framework for par-
titioning neural networks computation across multiple enclaves. In 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
(CCGRID). IEEE, 519-528.

Shuhei Enomoto and Hiroshi Yamada. 2022. A Multi-variant Execution Envi-
ronment for Securing In-memory KVSes. In 2022 18th European Dependable
Computing Conference (EDCC). IEEE, 9-16.

Antonio M Espinoza, Riley Wood, Stephanie Forrest, and Mohit Tiwari. 2022.
Back to the future: N-Versioning of Microservices. In 2022 52nd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). IEEE, 415-
427.

Robert Gawlik, Philipp Koppe, Benjamin Kollenda, Andre Pawlowski, Behrad
Garmany, and Thorsten Holz. 2016. Detile: Fine-grained information leak detec-
tion in script engines. In Detection of Intrusions and Malware, and Vulnerability
Assessment: 13th International Conference, DIMVA 2016, San Sebastian, Spain,
July 7-8, 2016, Proceedings 13. Springer, 322-342.

Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International conference on machine
learning. PMLR, 201-210.

Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen,
David Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, et al.
2020. The architectural implications of facebook’s dnn-based personalized
recommendation. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 488-501.

Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril,
Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro,
et al. 2018. Applied machine learning at facebook: A datacenter infrastructure
perspective. In 2018 IEEE international symposium on high performance computer
architecture (HPCA). IEEE, 620-629.

Zhezhi He, Adnan Siraj Rakin, Jingtao Li, Chaitali Chakrabarti, and Deliang
Fan. 2020. Defending and harnessing the bit-flip based adversarial weight
attack. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 14095-14103.

Sanghyun Hong, Pietro Frigo, Yigitcan Kaya, Cristiano Giuffrida, and Tudor
Dumitras. 2019. Terminal brain damage: Exposing the graceless degradation in
deep neural networks under hardware fault attacks. In 28th USENIX Security
Symposium (USENIX Security 19). 497-514.

Petr Hosek and Cristian Cadar. 2013. Safe software updates via multi-version
execution. In 2013 35th International Conference on Software Engineering (ICSE).
IEEE, 612-621.

Petr Hosek and Cristian Cadar. 2015. Varan the unbelievable: An efficient n-
version execution framework. ACM SIGARCH Computer Architecture News 43, 1
(2015), 339-353.

Jiahui Hou, Huigqi Liu, Yunxin Liu, Yu Wang, Peng-Jun Wan, and Xiang-Yang
Li. 2021. Model protection: Real-time privacy-preserving inference service
for model privacy at the edge. IEEE Transactions on Dependable and Secure
Computing 19, 6 (2021), 4270-4284.

Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, An-
drea Stocco, and Paolo Tonella. 2020. Taxonomy of real faults in deep learning
systems. In Proceedings of the ACM/IEEE 42nd international conference on software
engineering. 1110-1121.

Gadi Hutt, Vibhav Viswanathan, and Adam Nadolski. 2019. De-
liver high performance ML inference with AWS Inferentia. (2019).
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_
performance_ ML _inference_with AWS_Inferentia CMP324-R1.pdf

Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
comprehensive study on deep learning bug characteristics. In Proceedings of the
2019 27th ACM joint meeting on european software engineering conference and
symposium on the foundations of software engineering. 510-520.

Adriaan Jacobs, Merve Giilmez, Alicia Andries, Stijn Volckaert, and Alexios
Voulimeneas. 2024. System Call Interposition Without Compromise. In 2024 54th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN)). IEEE, 183-194.

Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. 2017. SGX-Bomb:
Locking down the processor via Rowhammer attack. In Proceedings of the 2nd
Workshop on System Software for Trusted Execution. 1-6.

Mojan Javaheripi and Farinaz Koushanfar. 2021. Hashtag: Hash signatures for
online detection of fault-injection attacks on deep neural networks. In 2021
IEEE/ACM International Conference On Computer Aided Design (ICCAD). IEEE,
1-9.

Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion
Stoica. 2018. Chameleon: scalable adaptation of video analytics. In Proceedings
of the 2018 conference of the ACM special interest group on data communication.
253-266.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht.
2017. Occupy the cloud: Distributed computing for the 99%. In Proceedings of
the 2017 symposium on cloud computing. 445-451.

https://docs.aws.amazon.com/elastic-inference
https://eigen.tuxfamily.org
https://github.com/enarx/enarx
https://github.com/enarx/enarx
https://edp.fortanix.com/
https://www.cvedetails.com/product/53738/Google-Tensorflow.html
https://www.cvedetails.com/product/53738/Google-Tensorflow.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domainextensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domainextensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domainextensions.html
https://kubernetes.io/docs/concepts/workloads/pods/init-containers
https://kubernetes.io/docs/concepts/workloads/pods/init-containers
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset
https://cloud.google.com/bigquery/docs/inference-overview
https://cloud.google.com/bigquery/docs/inference-overview
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing
https://www.nvidia.com/en-us/data-center/solutions/confidential-computing
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://github.com/microsoft/onnxruntime
https://github.com/OpenMathLib/OpenBLAS
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_high_performance_ML_inference_with_AWS_Inferentia_CMP324-R1.pdf

Middleware 25, December 15-19, 2025, Nashville, TN, USA

(50]

[51

(52]

(53

[60

[61

(62

(64

[65

[66

o
=

[68

[69

[70

3
=

[72]

Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
{GAZELLE}: A low latency framework for secure neural network inference. In
27th USENIX security symposium (USENIX security 18). 1651-1669.

David R Karger. 1993. Global Min-cuts in RNC, and Other Ramifications of a
Simple Min-Cut Algorithm.. In Soda, Vol. 93. Citeseer, 21-30.

Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and Ahmad-Reza
Sadeghi. 2020. {VOLTpwn}: Attacking x86 processor integrity from software.
In 29th USENIX Security Symposium (USENIX Security 20). 1445-1461.
Kyungtae Kim, Chung Hwan Kim, Junghwan" John" Rhee, Xiao Yu, Haifeng
Chen, Dave Tian, and Byoungyoung Lee. 2020. Vessels: Efficient and scalable
deep learning prediction on trusted processors. In Proceedings of the 11th ACM
Symposium on Cloud Computing. 462-476.

Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and
Mona Vij. 2018. Integrating remote attestation with transport layer security.
arXiv preprint arXiv:1801.05863 (2018).

Andreas Kogler, Daniel Gruss, and Michael Schwarz. 2022. Minefield: A Software-
only Protection for {SGX} Enclaves against {DVFS} Attacks. In 31st USENIX
Security Symposium (USENIX Security 22). 4147-4164.

Denis Kolegov and Anton Nikolaev. [n.d.].

Koen Koning, Herbert Bos, and Cristiano Giuffrida. 2016. Secure and efficient
multi-variant execution using hardware-assisted process virtualization. In 2016
46th Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). IEEE, 431-442.

Roland Kunkel, Do Le Quoc, Franz Gregor, Sergei Arnautov, Pramod Bhatotia,
and Christof Fetzer. 2019. Tensorscone: A secure tensorflow framework using
intel sgx. arXiv preprint arXiv:1902.04413 (2019).

Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod
Bhatotia, Pascal Felber, and Christof Fetzer. 2017. SGXBOUNDS: Memory safety
for shielded execution. In Proceedings of the Twelfth European Conference on
Computer Systems. 205-221.

Dmitrii Kuvaiskii, Dimitrios Stavrakakis, Kailun Qin, Cedric Xing, Pramod
Bhatotia, and Mona Vij. 2024. Gramine-TDX: A Lightweight OS Kernel for
Confidential VMs. In Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security. 4598-4612.

Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK:
Automated software diversity. In 2014 IEEE Symposium on Security and Privacy.
IEEE, 276-291.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436-444.

Dayeol Lee, Dmitrii Kuvaiskii, Anjo Vahldiek-Oberwagner, and Mona Vij. 2020.
Privacy-Preserving Machine Learning in Untrusted Clouds Made Simple. arXiv
preprint arXiv:2009.04390 (2020).

Jaehyuk Lee, Jinsoo Jang, Yeongjin Jang, Nohyun Kwak, Yeseul Choi, Changho
Choi, Taesoo Kim, Marcus Peinado, and Brent ByungHoon Kang. 2017. Hacking
in darkness: Return-oriented programming against secure enclaves. In 26th
USENIX Security Symposium (USENIX Security 17). 523-539.

Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee,
Fengyuan Xu, Chenren Xu, Lintao Zhang, and Junehwa Song. 2019. Occlumency:
Privacy-preserving remote deep-learning inference using SGX. In The 25th
Annual International Conference on Mobile Computing and Networking. 1-17.
Fabing Li, Xiang Li, and Mingyu Gao. 2023. Secure MLaa$S with Temper: Trusted
and Efficient Model Partitioning and Enclave Reuse. In Proceedings of the 39th
Annual Computer Security Applications Conference. 621-635.

Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik
Pattabiraman, Joel Emer, and Stephen W Keckler. 2017. Understanding error
propagation in deep learning neural network (DNN) accelerators and appli-
cations. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1-12.

Jingtao Li, Adnan Siraj Rakin, Zhezhi He, Deliang Fan, and Chaitali Chakrabarti.
2021. Radar: Run-time adversarial weight attack detection and accuracy recovery.
In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 790-795.

Jingtao Li, Adnan Siraj Rakin, Yan Xiong, Liangliang Chang, Zhezhi He, Deliang
Fan, and Chaitali Chakrabarti. 2020. Defending bit-flip attack through dnn
weight reconstruction. In 2020 57th ACM/IEEE Design Automation Conference
(DAC). IEEE, 1-6.

Shaofeng Li, Xinyu Wang, Minhui Xue, Haojin Zhu, Zhi Zhang, Yansong Gao,
Wen Wu, and Xuemin Sherman Shen. 2024. Yes, One-Bit-Flip Matters! Uni-
versal DNN Model Inference Depletion with Runtime Code Fault Injection. In
Proceedings of the 33th USENIX Security Symposium.

Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh, Yousuf Sait,
and Gareth Stockwell. 2022. Design and verification of the arm confidential
compute architecture. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22). 465-484.

Yu Li, Min Li, Bo Luo, Ye Tian, and Qiang Xu. 2020. Deepdyve: Dynamic
verification for deep neural networks. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 101-112.

Kailun Qin and Dawu Gu

[73] Yu Li, Yannan Liu, Min Li, Ye Tian, Bo Luo, and Qiang Xu. 2019. D2nn: a

fine-grained dual modular redundancy framework for deep neural networks.
In Proceedings of the 35th Annual Computer Security Applications Conference.
138-147.

Yuepeng Li, Deze Zeng, Lin Gu, Quan Chen, Song Guo, Albert Zomaya, and
Minyi Guo. 2021. Lasagna: Accelerating secure deep learning inference in sgx-
enabled edge cloud. In Proceedings of the ACM Symposium on Cloud Computing.
533-545.

Qi Liu, Wujie Wen, and Yanzhi Wang. 2020. Concurrent weight encoding-
based detection for bit-flip attack on neural network accelerators. In IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2020.

Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. 2017. Fault injection attack on
deep neural network. In 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 131-138.

Kangjie Lu, Meng Xu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2018. Stop-
ping memory disclosures via diversification and replicated execution. IEEE
Transactions on Dependable and Secure Computing 18, 1 (2018), 160-173.

[78] Junming Ma, Chaofan Yu, Aihui Zhou, Bingzhe Wu, Xibin Wu, Xingyu Chen,

Xiangqun Chen, Lei Wang, and Donggang Cao. 2020. S3ML: A secure serving
system for machine learning inference. arXiv preprint arXiv:2010.06212 (2020).
Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. {ROTE }: Rollback protec-
tion for trusted execution. In 26th USENIX Security Symposium (USENIX Security
17). 1289-1306.

Matthew Maurer and David Brumley. 2012. TACHYON: Tandem execution for
efficient live patch testing. In 21st USENIX Security Symposium (USENIX Security
12). 617-630.

Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson,
Rebekah Leslie-Hurd, and Carlos Rozas. 2016. Intel® software guard extensions
(intel® sgx) support for dynamic memory management inside an enclave. In
Proceedings of the Hardware and Architectural Support for Security and Privacy
2016.1-9.

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instruc-
tions and software model for isolated execution. Hasp@ isca 10, 1 (2013).

[83] James Ménétrey, Christian Gottel, Anum Khurshid, Marcelo Pasin, Pascal Fel-

ber, Valerio Schiavoni, and Shahid Raza. 2022. Attestation mechanisms for
trusted execution environments demystified. In IFIP International Conference on
Distributed Applications and Interoperable Systems. Springer, 95-113.

Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias
Leontiadis, Andrea Cavallaro, and Hamed Haddadi. 2020. Darknetz: towards
model privacy at the edge using trusted execution environments. In Proceedings
of the 18th International Conference on Mobile Systems, Applications, and Services.
161-174.

Mathias Morbitzer, Benedikt Kopf, and Philipp Zieris. 2023. GuaranTEE: Intro-
ducing control-flow attestation for trusted execution environments. In 2023 IEEE
16th International Conference on Cloud Computing (CLOUD). IEEE, 547-553.
Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. 2020. Plundervolt: Software-based fault injection attacks against
Intel SGX. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1466—
1482.

Wei Niu, Jiexiong Guan, Yanzhi Wang, Gagan Agrawal, and Bin Ren. 2021.
Dnnfusion: accelerating deep neural networks execution with advanced operator
fusion. In Proceedings of the 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation. 883—-898.

Augustus Odena, Catherine Olsson, David Andersen, and Ian Goodfellow. 2019.
Tensorfuzz: Debugging neural networks with coverage-guided fuzzing. In Inter-
national Conference on Machine Learning. PMLR, 4901-4911.

Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof
Fetzer. 2018. Varys: Protecting {SGX} Enclaves from Practical {Side-Channel}
Attacks. In 2018 Usenix Annual Technical Conference (USENIX ATC 18). 227-240.
Sebastian Osterlund, Koen Koning, Pierre Olivier, Antonio Barbalace, Herbert
Bos, and Cristiano Giuffrida. 2019. kMVX: Detecting kernel information leaks
with multi-variant execution. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems. 559-572.

Luis Pina, Anastasios Andronidis, Michael Hicks, and Cristian Cadar. 2019. Mved-
sua: Higher availability dynamic software updates via multi-version execution.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems. 573-585.

Kailun Qin and Dawu Gu. 2024. One System Call Hook to Rule All TEE OSes
in the Cloud. In 2024 IEEE 17th International Conference on Cloud Computing
(CLOUD). IEEE, 205-216.

Pengfei Qiu, Dongsheng Wang, Yonggiang Lyu, and Gang Qu. 2019. Voltjockey:
Breaching trustzone by software-controlled voltage manipulation over multi-
core frequencies. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 195-209.

MVTEE: Multi-Variant Trusted Execution for Secure Model Inference

[94]

[95

[98

[99]

[100]

[101

[102

[103

[104]

[105

[106

[107

[108

[109

[110

[111

[112

[113

[114

[115

[116

Do Le Quoc, Franz Gregor, Sergei Arnautov, Roland Kunkel, Pramod Bhato-
tia, and Christof Fetzer. 2020. Securetf: A secure tensorflow framework. In
Proceedings of the 21st International Middleware Conference. 44-59.

M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A hybrid secure
computation framework for machine learning applications. In Proceedings of
the 2018 on Asia conference on computer and communications security. 707-721.
André Rosti, Stijn Volckaert, Michael Franz, and Alexios Voulimeneas. 2024. T'll
Be There for You! Perpetual Availability in the A 8 MVX System. In 2024 Annual
Computer Security Applications Conference (ACSAC). IEEE, 520-533.

Babak Salamat, Todd Jackson, Andreas Gal, and Michael Franz. 2009. Orchestra:
intrusion detection using parallel execution and monitoring of program variants
in user-space. In Proceedings of the 4th ACM European conference on Computer
systems. 33—46.

Babak Salamat, Todd Jackson, Gregor Wagner, Christian Wimmer, and Michael
Franz. 2011. Runtime defense against code injection attacks using replicated
execution. IEEE Transactions on Dependable and Secure Computing 8, 4 (2011),
588-601.

Jaebaek Seo, Byoungyoung Lee, Seong Min Kim, Ming-Wei Shih, Insik Shin,
Dongsu Han, and Taesoo Kim. 2017. SGX-shield: Enabling address space layout
randomization for SGX programs.. In NDSS.

AMD Sev-Snp. 2020. Strengthening VM isolation with integrity protection and
more. White Paper, January 53 (2020), 1450-1465.

Qingchao Shen, Haoyang Ma, Junjie Chen, Yonggiang Tian, Shing-Chi Cheung,
and Xiang Chen. 2021. A comprehensive study of deep learning compiler bugs.
In Proceedings of the 29th ACM Joint meeting on european software engineering
conference and symposium on the foundations of software engineering. 968—980.
Tianxiang Shen, Ji Qi, Jianyu Jiang, Xian Wang, Siyuan Wen, Xusheng Chen,
Shixiong Zhao, Sen Wang, Li Chen, Xiapu Luo, et al. 2022. {SOTER}: Guarding
Black-box Inference for General Neural Networks at the Edge. In 2022 USENIX
Annual Technical Conference (USENIX ATC 22). 723-738.

Sandra Siby, Sina Abdollahi, Mohammad Maheri, Marios Kogias, and Hamed
Haddadi. 2024. GuaranTEE: Towards Attestable and Private ML with CCA. In
Proceedings of the 4th Workshop on Machine Learning and Systems. 1-9.
Jonathan Soifer, Jason Li, Minggin Li, Jeffrey Zhu, Yingnan Li, Yuxiong He, Elton
Zheng, Adi Oltean, Maya Mosyak, Chris Barnes, et al. 2019. Deep learning in-
ference service at microsoft. In 2019 USENIX Conference on Operational Machine
Learning (OpML 19). 15-17.

Supraja Sridhara, Andrin Bertschi, Benedict Schliiter, and Shweta Shinde. 2024.
SIGY: Breaking Intel SGX Enclaves with Malicious Exceptions & Signals. arXiv
preprint arXiv:2404.13998 (2024).

Frederic Stumpf, Omid Tafreschi, Patrick Réder, Claudia Eckert, et al. 2006. A
robust integrity reporting protocol for remote attestation. In Proceedings of the
Workshop on Advances in Trusted Computing (WATC). 65.

Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Long
Lu, and Somesh Jha. 2023. Shadownet: A secure and efficient on-device model
inference system for convolutional neural networks. In 2023 IEEE Symposium
on Security and Privacy (SP). IEEE, 1596-1612.

Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2017. { CLKSCREW }:
Exposing the perils of {Security-Oblivious} energy management. In 26th
USENIX Security Symposium (USENIX Security 17). 1057-1074.

Flavio Toffalini, Mathias Payer, Jianying Zhou, and Lorenzo Cavallaro. 2022.
Designing a provenance analysis for SGX enclaves. In Proceedings of the 38th
Annual Computer Security Applications Conference. 102-116.

Dominik Téllner, Christian Dietrich, Illia Ostapyshyn, Florian Rommel, and
Daniel Lohmann. 2023. {MELF}: Multivariant Executables for a Heterogeneous
World. In 2023 USENIX Annual Technical Conference (USENIX ATC 23). 257-273.
Lisa Torrey and Jude Shavlik. 2010. Transfer learning. In Handbook of research
on machine learning applications and trends: algorithms, methods, and techniques.
IGI global, 242-264.

Chia-Che Tsai, Donald E Porter, and Mona Vij. 2017. {Graphene-SGX}: A
Practical Library {OS} for Unmodified Applications on {SGX}. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17). 645-658.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the intel {SGX} kingdom with tran-
sient {Out-of-Order} execution. In 27th USENIX Security Symposium (USENIX
Security 18). 991-1008.

Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D Garcia,
and Frank Piessens. 2019. A tale of two worlds: Assessing the vulnerability of
enclave shielding runtimes. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. 1741-1758.

Stephan Van Schaik, Alex Seto, Thomas Yurek, Adam Batori, Bader AlBassam,
Daniel Genkin, Andrew Miller, Eyal Ronen, Yuval Yarom, and Christina Garman.
2024. Sok: Sgx. fail: How stuff gets exposed. In 2024 IEEE Symposium on Security
and Privacy (SP). IEEE, 4143-4162.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert

Middleware 25, December 15-19, 2025, Nashville, TN, USA

Cohen. 2018. Tensor comprehensions: Framework-agnostic high-performance
machine learning abstractions. arXiv preprint arXiv:1802.04730 (2018).

[117] Jonas Vinck, Bert Abrath, Bart Coppens, Alexios Voulimeneas, Bjorn De Sutter,

and Stijn Volckaert. 2022. Sharing is caring: Secure and efficient shared memory
support for mvees. In Proceedings of the Seventeenth European Conference on
Computer Systems. 99-116.

Stijn Volckaert, Bart Coppens, Bjorn De Sutter, Koen De Bosschere, Per Larsen,
and Michael Franz. 2017. Taming parallelism in a multi-variant execution
environment. In Proceedings of the Twelfth European Conference on Computer
Systems. 270-285.

Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Homescu, Per
Larsen, Bjorn De Sutter, and Michael Franz. 2016. Secure and efficient applica-
tion monitoring and replication. In 2016 USENIX Annual Technical Conference
(USENIX ATC 16). 167-179.

Stijn Volckaert, Bjorn De Sutter, Tim De Baets, and Koen De Bosschere. 2013.
GHUMVEE: efficient, effective, and flexible replication. In Foundations and
Practice of Security: 5th International Symposium, FPS 2012, Montreal, QC, Canada,
October 25-26, 2012, Revised Selected Papers 5. Springer, 261-277.

Alexios Voulimeneas, Dokyung Song, Per Larsen, Michael Franz, and Stijn Vol-
ckaert. 2021. dmvx: Secure and efficient multi-variant execution in a distributed
setting. In Proceedings of the 14th European Workshop on Systems Security. 41-47.
Alexios Voulimeneas, Dokyung Song, Fabian Parzefall, Yeoul Na, Per Larsen,
Michael Franz, and Stijn Volckaert. 2019. DMON: A distributed heterogeneous
n-variant system. arXiv preprint arXiv:1903.03643 (2019).

Alexios Voulimeneas, Dokyung Song, Fabian Parzefall, Yeoul Na, Per Larsen,
Michael Franz, and Stijn Volckaert. 2020. Distributed heterogeneous n-variant
execution. In Detection of Intrusions and Malware, and Vulnerability Assessment:
17th International Conference, DIMVA 2020, Lisbon, Portugal, June 24-26, 2020,
Proceedings 17. Springer, 217-237.

Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing
Wu, Yajuan Wang, Endong Wang, Qing Zhang, Bo Shen, et al. 2014. Intel math
kernel library. High-Performance Computing on the Intel® Xeon Phi™: How to
Fully Exploit MIC Architectures (2014), 167-188.

Huibo Wang, Pei Wang, Yu Ding, Mingshen Sun, Yiming Jing, Ran Duan, Long
Li, Yulong Zhang, Tao Wei, and Zhiqiang Lin. 2019. Towards memory safe
enclave programming with rust-sgx. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 2333-2350.

Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. 2017. Leaky cauldron
on the dark land: Understanding memory side-channel hazards in SGX. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2421-2434.

Xiaoguang Wang, SengMing Yeoh, Robert Lyerly, Pierre Olivier, Sang-Hoon
Kim, and Binoy Ravindran. 2020. A framework for software diversification with
{ISA} heterogeneity. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020). 427-442.

Xiaoguang Wang, SengMing Yeoh, Pierre Olivier, and Binoy Ravindran. 2020.
Secure and efficient in-process monitor (and library) protection with Intel MPK.
In Proceedings of the 13th European workshop on Systems Security. 7-12.
Yuanpeng Wang, Zigi Zhang, Ningyu He, Zhineng Zhong, Shengjian Guo,
Qinkun Bao, Ding Li, Yao Guo, and Xiangqun Chen. 2023. Symgx: Detecting
cross-boundary pointer vulnerabilities of sgx applications via static symbolic
execution. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security. 2710-2724.

Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhigiang Lin. 2012.
Securing untrusted code via compiler-agnostic binary rewriting. In Proceedings
of the 28th Annual Computer Security Applications Conference. 299-308.
Jean-Luc Watson, Sameer Wagh, and Raluca Ada Popa. 2022. Piranha: A {GPU}
platform for secure computation. In 31st USENIX Security Symposium (USENIX
Security 22). 827-844.

Yecheng Xiang, Yidi Wang, Hyunjong Choi, Mohsen Karimi, and Hyoseung
Kim. 2021. Aegisdnn: Dependable and timely execution of dnn tasks with sgx.
In 2021 IEEE Real-Time Systems Symposium (RTSS). IEEE, 68-81.

Meng Xu, Kangjie Lu, Taesoo Kim, and Wenke Lee. 2017. Bunshin: compositing
security mechanisms through diversification. In 2017 USENIX Annual Technical
Conference (USENIX ATC 17). 271-283.

Fangfei Yang, Bumjin Im, Weijie Huang, Kelly Kaoudis, Anjo Vahldiek-
Oberwagner, Chia-Che Tsai, and Nathan Dautenhahn. 2024. Endokernel: A
Thread Safe Monitor for Lightweight Subprocess Isolation. In 33rd USENIX
Security Symposium (USENIX Security 24). 145-162.

Kenichi Yasukata, Hajime Tazaki, Pierre-Louis Aublin, and Kenta Ishiguro. 2023.
zpoline: a system call hook mechanism based on binary rewriting. In 2023
USENIX Annual Technical Conference (USENIX ATC 23). 293-300.

SengMing Yeoh, Xiaoguang Wang, Jae-Won Jang, and Binoy Ravindran. 2024.
sMVX: Multi-Variant Execution on Selected Code Paths. In Proceedings of the
25th International Middleware Conference.

Ruiyi Zhang, Lukas Gerlach, Daniel Weber, Lorenz Hetterich, Youheng Lii,
Andreas Kogler, and Michael Schwarz. 2024. {CacheWarp}: Software-based

Middleware 25, December 15-19, 2025, Nashville, TN, USA

[138

[139

Fault Injection using Selective State Reset. In 33rd USENIX Security Symposium
(USENIX Security 24). 1135-1151.

Sheng Zhang, Adrian Tang, Zhewei Jiang, Simha Sethumadhavan, and Min-
goo Seok. 2018. Blacklist core: Machine-learning based dynamic operating-
performance-point blacklisting for mitigating power-management security at-
tacks. In Proceedings of the International Symposium on Low Power Electronics
and Design. 1-6.

Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang.
2018. An empirical study on tensorflow program bugs. In Proceedings of the
27th ACM SIGSOFT international symposium on software testing and analysis.

[140

[141

Kailun Qin and Dawu Gu

129-140.

Ziqi Zhang, Chen Gong, Yifeng Cai, Yuanyuan Yuan, Bingyan Liu, Ding Li, Yao
Guo, and Xiangqun Chen. 2023. No Privacy Left Outside: On the (In-) Security of
TEE-Shielded DNN Partition for On-Device ML. arXiv preprint arXiv:2310.07152
(2023).

Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. 2020.
Flextensor: An automatic schedule exploration and optimization framework for
tensor computation on heterogeneous system. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems. 859-873.

	Abstract
	1 Introduction
	2 Background
	2.1 Secure ML Inference Service
	2.2 Trusted Execution Environment
	2.3 Challenges to TEE-based Secure Inference
	2.4 Multi-Variant Execution

	3 Overview
	3.1 System Model
	3.2 Design Goals

	4 Design
	4.1 Model Partition
	4.2 Variant Generation
	4.3 TEE-based MVX

	5 Implementation
	5.1 Offline ML MVX Tool
	5.2 Runtime TEE MVX System

	6 Evaluation
	6.1 Experimental Setup
	6.2 Fundamental Performance of MVTEE
	6.3 Performance of Selective MVX
	6.4 Performance of MVTEE in Real Setup
	6.5 Security Analysis

	7 Related Work and Discussions
	7.1 TEE-based Secure Model Inference
	7.2 Defenses Against Relevant Attacks
	7.3 MVX Design and Applications
	7.4 Future Work

	8 Conclusion
	Acknowledgments
	References

