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Abstract

Trusted Execution Environments (TEEs) have been proposed as
a promising approach for secure model inference, providing in-
use data protection to ensure confidentiality and integrity against
untrusted third parties, with additional attestability. However, TEE-
protected secure model inference remains susceptible to numerous
software vulnerabilities and fault attacks, potentially undermin-
ing the designed protection objectives and giving a false sense of
security and reliability.

To counter these diverse threats, we introduce MVTEE, a TEE-
based model inference system employing Multi-Variant Execution
(MVX) that runs multiple, diversified inference variants in parallel
and monitors execution divergence at checkpoints. The idea of
MVTEE is not to prevent threats, but to leverage the fact that a
specific vulnerability typically impacts only one variant, ensuring
timely threat detection and response before any damage is done.
MVTEE applies a random-balanced model partitioning for check-
point insertion and leverages the heterogeneous nature of model
inference stack to generate variants with multi-level diversification.
We base MVTEE on a cross-process monitoring architecture with a
two-stage variant bootstrap design and support asynchronous selec-
tive MVX for efficient execution. Our evaluations demonstrate that
MVTEE, in a real-world setup, secures model inference with accept-
able performance overhead in sequential execution and maintains
comparable or even improved performance in pipelined execution.
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1 Introduction

Major cloud service providers, such as Amazon AWS [1], Microsoft
Azure [104], and Google Cloud [9], offer Machine Learning (ML) in-
ference services to reduce ML infrastructure costs [43] and manage
large-scale inference queries [35, 36]. These services deploy pre-
trained models from model owners and pull user data for inference.
Today, threats including malicious tenants, compromised providers,
and physical breaches have raised significant concerns. Users de-
mand data privacy, while model owners need to protect their high-
value intellectual properties. Further, models in safety-critical appli-
cations, like high-performance computing or autonomous vehicles,
require protection against tampering to ensure reliable results.
Recently, state-of-the-art research and production cloud services
have embraced the widely accessible CPU Trusted Execution Envi-
ronments (TEEs) for secure ML inference, protecting the confiden-
tiality and integrity of in-use models and data from untrusted third
parties, with additional attestability [53, 58, 63, 65, 66, 74, 78, 94].
However, this widespread adoption has also made them more at-
tractive targets for threats that undermine security or reliability:

o Software vulnerabilities: ML frameworks and libraries are increas-
ingly plagued by memory and runtime errors, which can lead
to security breaches and incorrect outputs [24, 42, 44, 88, 139].
Unfortunately, these vulnerabilities fall outside of the TEE threat
model by design [115]. This places an unrealistic expectation on
developers to identify and mitigate such issues in advance.
Fault susceptibility: ML inference and TEEs are vulnerable to
faults from hardware issues or attacks [18, 38, 70, 76, 86, 93, 108].
These faults can lead to undesirable consequences affecting all
subsequent inputs. A recent attack highlighted the vulnerability
of model inference to runtime fault injections through a single bit-
flip at the code or library level [70]. Considering that the attack
targets only one of many vulnerable ML inference dependencies,
it is likely that more similar attacks will surface in the future.

We stress that the causes and targets of these issues vary widely,
and some are inherently complex to resolve. Therefore, our core
idea is not to prevent them to happen but to ensure they are detected
and resolved before leading to damage. In this paper, we present
MVTEE, a novel TEE-based model inference system using the Multi-
Variant Execution (MVX) technique (Figure 1) — a method that
enhances software security and reliability by running multiple,
functionally equivalent but diversified program variants in parallel
and monitoring execution divergence at designated checkpoints.
The fundamental concept behind MVX is that a particular defect
or exploit can impact only one specific variant, while the other
variants will either crash or yield inconsistent execution results.
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Figure 1: High-Level Architecture of MVX

To insert checkpoints that enable effective early detection and
response, MVTEE applies random-balanced model partitioning,
which also provides pipelined execution opportunities.

o To generate variants with minimal manual effort, MVTEE lever-
ages the heterogeneous, interoperable, and modular nature of
the ML inference stack to introduce multi-level diversification.

o To monitor checkpoints under TEE’s threat model, we adopt a
cross-process MVX monitoring architecture for better isolation
and scalability. It supports attestable runtime variant initializa-
tion and updates based on a two-stage variant bootstrap design.

o For efficient execution, we further apply selective MVX and asyn-

chronous cross-validation strategies.

We demonstrate the practicality of MVTEE through performance
evaluations on a set of models. In a practical setup, we secure
model inference with acceptable overhead in sequential execution.
In pipelined execution, we achieve comparable performance when
the majority of the model is protected with MVX, and we see im-
proved performance when only a specific part of the model requires
hardening. We also explore the fundamental overheads of MVTEE
and analyze the efficiency of selective MVX. Our security analysis
shows that MVTEE can effectively protect against targeted attacks.

Overall, this paper makes the following contributions:

e We introduce a TEE-based MVX system for secure ML inference,
addressing its inherent security and reliability challenges. Both
MVX for ML inference and TEE-based MVX are less explored in
the previous research.

e We present an automatic approach to construct MVX check-
points and inference variants through random-balanced model
partitioning and ML-native multi-level diversification.

e We propose a generic and security-first design for a TEE-based
MVX system that includes efficiency optimizations and supports
attestable runtime variant initialization and updates.

o We demonstrate MVTEE’s efficiency through evaluations on
various real-world models and provide a security analysis of its
attack surfaces, explaining the applied mitigations.

2 Background
2.1 Secure ML Inference Service

ML inference has massive adoption in applications [48, 49]. In par-
ticular, Deep Neural Networks (DNNs) which consist of multiple
layers organized in a Directed Acyclic Graph (DAG), have emerged
as the predominant ML technique due to their efficacy [62]. To
enable easy, scalable, fault-tolerant, and cost-efficient model infer-
ence, cloud inference services have gained traction. This paradigm
is supported by major cloud service providers [1, 9, 104].
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To address security concerns with cloud-based inference, two pri-
mary methods have been explored. The first involves cryptographic
techniques that come at a high performance cost [34, 50, 95, 131].
The alternative is to build inference on TEEs, which is more preva-
lent in large-scale deployments [53, 58, 63, 65, 66, 74, 78, 94, 103].

2.2 Trusted Execution Environment

TEEs isolate code and data in secure memory segments that are
inaccessible to non-TEE executions, including privileged adminis-
trators and system software. Nowadays, the majority of hardware
vendors support CPU TEEs in two types: process-based (e.g., Intel
SGX [27, 82]) and virtual machine (VM)-based (e.g., Intel TDX [6],
AMD SEV [100], ARM CCA [71]). While GPU TEE:s are recently
becoming available [10], they are less accessible, with their attack
surfaces underexplored. TEEs also provide an attestation mecha-
nism that allows a verifier to authenticate the code and data within
a local or remote TEE and securely transmit secrets to it [83, 106].

However, software vulnerabilities in workloads fall outside of
the TEE threat model [17, 25, 64, 114], and attestation only pro-
vides load-time integrity [85, 109]. In practice, workloads inevitably
contain vulnerabilities, and resolving all of them beforehand is im-
practical. TEEs are also susceptible to fault attacks, such as those
exploiting dynamic voltage scaling interfaces [52, 86] or Rowham-
mer attacks on TEE memory [46]. Notably, such fault attacks can
be executed remotely, posing a real threat to secure cloud services.
Besides, researchers have identified that TEEs are vulnerable to
side-channel and transient execution vulnerabilities [89, 113, 126].
Attackers can also exploit multiple vulnerabilities to mount attacks.

2.3 Challenges to TEE-based Secure Inference

Recent advances in ML-targeted attacks complicate achieving the
intended security and reliability objectives of TEE-based secure
inference. Firstly, a large number of vulnerabilities have been iden-
tified in ML frameworks and libraries, especially those written in
memory-unsafe languages [24, 29, 42, 44, 56, 101, 139]. Data from
the CVE website shows that since 2019, TensorFlow has had over
140 overflow and memory corruption vulnerabilities, which can
result in code execution or Denial of Service (DoS) [5]. Another
growing concern is faults targeting the weight parameters of DNN
models [18, 38, 76] or runtime inference code/libraries [70]. These
attacks identify and alter vulnerable bits to compromise model in-
tegrity and reduce prediction accuracy. Most TEE-based secure ML
inference solutions overlook these threats in their threat models.
This oversight can undermine protection efforts, causing severe
consequences in security- and safety-critical applications.

2.4 Multi-Variant Execution

The N-Version system, or Multi-Variant Execution (MVX), hardens
programs through replication and diversification, based on that any
defect or attack would impact only a subset of variants [16, 28, 32,
33, 40, 77, 97, 119, 120]. Specifically, a monitor distributes inputs to
multiple diversified variants running concurrently and periodically
checks their execution results. If discrepancies occur, MVX uses a
voting mechanism to decide which output to accept, whether to
halt, or to restart from a saved state. MVX is primarily used for
attack detection, but also for seamless software updates [39, 80, 91]



MVTEE: Multi-Variant Trusted Execution for Secure Model Inference

However, MVX is not without challenges. First, running multi-
ple variants simultaneously consumes additional CPU and mem-
ory resources [40]. Replicating entire programs also complicates
and slows down synchronization, especially when with extensive
checkpoints. Another major obstacle in practice is that creating
and maintaining diverse yet consistent software variants is difficult
and expensive [61]. Manual diversification is burdensome and may
require the involvement of several independent teams, increasing
cost and time. Other known challenges include false alarms [97, 98],
and support for multithreading [118] and shared memory [117].

3 Overview

3.1 System Model

Threat model. TEEs consider the following as untrusted: (i) hard-
ware outside the CPU package, (ii) privileged system software, (iii)
co-located applications, including unrelated TEEs (except archi-
tectural TEEs), and (iv) user-space components in the untrusted
world. Denial-of-service (DoS) attacks are considered out of scope.
MVTEE adopts this standard TEE threat model as its basis.

MVTEE aims to protect the same assets as previous secure in-
ference designs. We consider the models (including topology and
weights) and all inference data (input, output, and intermediate
data) as sensitive. We highlight runtime security of ML inference,
focusing on (i) software memory-safety and runtime errors, and (ii)
faults in models or the ML framework/libraries, which can lead to
data leaks, integrity breaches, or incorrect inference outcomes.

Side channel attacks are orthogonal and are thus out of scope. We
do not consider algorithm-level model stealing, inversion, backdoor,
and membership inference attacks where dedicated defenses are
available. TEEs can help mitigate some of these attacks like pre-load
model/code poisoning through attestation and isolation.

We assume MVTEE components are reliable and flawlessly imple-
mented. The tools used for variant generation, which may contain
vulnerabilities or produce false positives/negatives, are considered
out of scope. Same as other MVX systems, MVTEE’s precise security
guarantees depend on the exact transformations (which address
specific classes of attacks) applied to each variant. Note that such
transformations would not increase the runtime Trusted Comput-
ing Base (TCB) of the system.
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Figure 2: Usage and Deployment Model

Usage and deployment model. As shown in Figure 2, in the of-
fline phase, we systematically partition the to-be-protected model
into partition sets ® and generate diversified variants for each par-
tition @. This creates a pool of inference variants in an automatic
manner. During the online phase, we setup the MVTEE monitor
TEE and multiple variant TEEs. Specifically, the variants are dynam-
ically initialized from the pre-established variant pool ®, based on a
(selective) MVX plan (§4.3) maintained by the monitor. Throughout
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execution, the monitor synchronizes and verifies variants’ outputs
at checkpoints and distributes them to the next stage variants for
stateless, non-interfering inferences in a pipelined fashion ®. The
monitor can then use a voting process to decide on necessary pro-
tective measures in case of detected inconsistencies. A full or partial
secure update of variants can be arranged by MVTEE ®.

3.2 Design Goals

MVTEE achieves the following design goals:

Security- and safety-first principle. MVTEE aims to diversify
model inference over space and time. Specifically, we apply random-
balanced partitioning to generate checkpoints for effective early
threat detection and response. We build a pool of diversified variants
for dynamic variant initialization and updates. We also adopt an
MVX architecture that prioritizes security and fault isolation with
minimal TCB and attack surfaces.

ML native. MVTEE leverages the heterogeneous, interoperable,
and composable nature of ML inference stack and ecosystem to
produce multi-level diversification of variants. This also promotes
the applicability and reduces the cost of manual diversification.
Adherence to TEE threat model. MVTEE must not weaken the
security assumptions in the original TEE threat model. We base on a
cross-process monitoring architecture that anchors the root of trust
in the monitor TEE rather than relying on the trustworthiness of the
host kernel. The monitor manages the attestation, key distribution,
secure binding, fault tolerance and execution state monitoring of
variant TEEs. We design a two-stage variant bootstrap to maintain
the secrecy of the MVX details from privileged attackers.
Efficient execution. MVTEE aims to deliver reliable but efficient
inference. We introduce selective MVX that replicates a flexible
number of variants only on the selected, sensitive partitions. We fur-
ther support execution in an asynchronous cross-validation mode
to accommodate potentially significant execution time differences
between inference variants in practice.

4 Design
4.1 Model Partition

To effectively generate checkpoints that enable early detection,
termination, and recovery from defects or attacks, we use model
partitioning. This method divides the computational graph of the
model into smaller subgraphs, with the connections between these
subgraphs naturally forming the checkpoints. We highlight that the
number and size of the produced partitions are crucial for maintain-
ing both security/safety and performance benefits. Specifically, the
capability of early reaction is directly proportional to the number
of partitions/checkpoints, whereas the efficiency of sequential par-
tition execution is inversely proportional. In terms of performance,
overly small partitions might lose optimization opportunities that
are provided by a ML compiler or inference runtime, as they would
now need to be applied within individual partitions rather than
across multiple ones. From security and safety perspectives, small
partitions can introduce risks due to their simplified structure, po-
tentially offering attackers unintended advantages. It could also
miss failed exploit attempts or delay safety guarantees, as some
fault-caused discrepancies may be hidden by the model’s resilience
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[38] or not instantly visible [73]. In contrast, large partitions would
compromise our objective of prompt response to issues.

Therefore, to provide sufficient diversity and runtime flexibil-
ity, we use a randomized graph partitioning based on the global
min-cuts algorithm [51] for checkpoint generation, as presented in
Algorithm 1. Specifically, we formalize soft preferences (based on a
customized and extensible weight function) and hard constraints to
"bias" towards more balanced partition sizes by default. Optionally,
the algorithm can be run multiple times to identify correct and
globally optimal configurations that meet specific requirements
(e.g., balance, security levels). We repeat this model partitioning
with different target numbers, creating a diverse range of partition
sets and checkpoint configurations.

Algorithm 1: Random Contraction for Model Partitioning

Input :Model Graph G, target number of partitions ¢
Output: Array of partitions, each containing a list of nodes
1 Procedure ModelRandomContraction(G, t):

2 par, parSize < {n:nfornin G},{n: 1 for nin G};

3 edges «— {(i, j) for i, j in G if i outputs to j};

4 ComputeWeights(edges, par, parSize);

5 while number of partitions > t do

6 (i, j) « RandEdgeByWeight(edges, par, parSize);
7 if CheckConstraints(par|i], par[j]);

8 then

9 MergePartitions(i, j, par, parSize);

10 UpdateWeights(edges, par, parSize);

1 end
12 end
13 return Partitions formed by nodes sharing the same par;

We emphasize that this partition-as-checkpoint design can bring
parallelization opportunities through pipelined execution, nicely
hiding the overhead associated with MVX monitoring and synchro-
nization, as they enable compute-communication overlapping.

4.2 Variant Generation

The ML inference ecosystem offers a variety of frameworks, tools,
runtimes, acceleration libraries, and hardware backends with great
interoperability and composability. This high natural diversity pro-
vides opportunities for efficient defect and intrusion detection with
minimal manual effort, which often involves maintenance burdens
and compatibility challenges. Inspired by this observation, MVTEE
proposes an automatic, ML-native approach to generate variants
with multi-level diversification, as demonstrated in Figure 3.
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Figure 3: Multi-Level Diversification of Variants
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Model graph level. A DNN model is represented as a DAG con-
taining primitive operators connected to form functions in different
topologies. Graph-level diversification adds complexity and un-
predictability, making it harder for attackers to identify or exploit
vulnerabilities. This diversification extends to all supported lower-
level backends. Specifically, MVTEE uses Open Neural Network
Exchange (ONNX) [11] for graph-level diversification. ONNX is an
open-source format that defines an extensible computational graph
model, operators, and standard data types. It serves as a common
intermediate representation (IR) for various ML frameworks. We ap-
ply ONNX-to-ONNX transformations or optimizations to construct
functionally equivalent graph-level model variants by:

e Dummy operators: adding operators that won’t change the origi-
nal outputs such as zero or identity operators.

o Equivalent operator replacement: e.g., transforming a single op-
erator into equivalent smaller ones (decomposition) or the vice
versa (fusion), substituting a convolutional operator with an
equivalent fully connected linear operator.

e Channel manipulation: duplicating or shuffling the output chan-

nels of a convolutional or linear layer and adjusting the subse-

quent layer’s weights accordingly.

Selective optimization: instead of comprehensive optimization,

selectively fusing or eliminating operators as a defense.

Other mathematical-property-based graph rewriting [87]: e.g.,

reordering operators that are commutative in nature.

Inference instance level. MVTEE produces diversification at the
inference instance level (including the inference runtimes, acceler-
ation libraries and supported hardware) via three paths.

First, we leverage the interoperability offered by cross-framework
converters to transform a model in ONNX format to various frame-
work formats (e.g., PyTorch, TensorFlow, Mindspore, Paddle). This
enables MVTEE to execute under different ML frameworks using
distinct and configurable runtime settings.

Second, we use ONNX Runtime (ORT) [12], the default inference
engine of ONNX, leveraging its Execution Providers (EP) framework
to create variants that work with different executors, acceleration
libraries and hardware. ORT supports a wide array of EPs today.

Third, we capitalize on ML compilers such as TVM [22]. The ML
compiler processes high-level model specifications (e.g., in ONNX
format) and performs code generation, translation, and optimization
across various abstraction levels (e.g., graph-level and operator-
level) for different hardware backends. At the operator level, the ML
compiler often uses auto-tuning techniques to iteratively identify
the most efficient implementation options [14, 23, 116, 141]. This
generates trial candidates that vary in kernel parameters, tensor
operation strategies like fusion and parallelization, as well as tensor
data layouts and memory management, thereby naturally achieving
diversification. Model compilation may also involve third-party
toolchains like LLVM to apply further low-level IR transformations
(including instrumentation). In addition, TVM includes several built-
in executors and is itself supported by ORT as an EP.

Note that some inference runtimes include built-in support for
graph-level transformations. In such cases, MVTEE can either uti-
lize this feature to create configurable or non-deterministic diver-
sification, or explicitly disallow them to retain the deterministic
diversification established at the previous model graph level.
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Other levels of variant generation. Since ML dependencies are
compiled with conventional compilers, existing compiler-assisted
security mechanisms can be applied in conjunction. These include
different types of sanitizers, stack protection, compiler-inserted
padding, runtime checks, and hardware-assisted enforcement. More-
over, system-level security mechanisms like Address Space Layout
Randomization (ASLR) are supported in MVTEE. We also support
execution in SGX and TDX, providing TEE-level variants, and of-
fer Application Binary Interface (ABI) or Instruction Set Architec-
ture (ISA) level diversification through distributed execution on
different backends. While we focus on software-level rather than
algorithm-level variant generation, these methods can be applied
independently. Inheriting from MVX, MVTEE is not limited by spe-
cific security mechanisms and allows the concurrent use of multiple
defenses by assigning different measures to each variant.

4.3 TEE-based MVX

MVTEE is composed of a monitor TEE and multiple variant TEEs
at runtime. The monitor acts as the security manager, ensuring the
correct initialization and execution states of all variants. Based on a
runtime-provisioned MVX configuration that specifies the partition
set (number and sizes of partitions) and the variant claims (type
and number of variants per partition), the monitor manages the
attestation, key distribution, binding and fault tolerance of variants.

We base our system on an enclave abstraction (i.e., a one-to-one
mapping between TEE, process, and variant) to provide high level
of isolation with a minimal trust assumption. We highlight that
this abstraction is not specific to process-based TEEs but is also
applicable to VM-based TEEs [60]. In MVTEE, we currently support
SGX and TDX, with the potential to extend to other CPU TEEs.
Monitoring architecture. There are different types of MVX mon-
itoring designs as illustrated in Figure 4, each offering distinct
security-performance trade-offs. In MVTEE, we adopt a Cross-
Process User-Space (CP/US) monitor design where the MVX mon-
itor operates within a separate TEE backed by a TEE OS with
minimal attack surfaces and a very low TCB.

. . IP/CP: In/Cross Process
Variant Variant,
US/KS: User/Kernel Space
IP/US IP/US i CPmS
% shared memory
{2} Monitor
Kemel‘ t Untrusted

Figure 4: Monitor Architecture Design Choices

This design is driven by two main considerations: (i) under TEE’s
threat model, the privileged kernel is outside the TCB, rendering
Kernel-Space (KS) monitoring inapplicable; (ii) targeting potential
vulnerabilities within the in-process software stack, a cross-process
monitor provides better security and fault isolation, ensuring that
a compromised variant cannot compromise the monitor. This archi-
tecture also naturally supports execution in a distributed setting.
We rely on cryptographically protected secure channels established
after successful attestation for monitor-variant interactions.
Two-stage variant bootstrap. To align with TEE’s threat model,
where MVX details must remain confidential from untrusted parties
(e.g., orchestrators responsible for resource management in stan-
dard cloud deployments), we introduce a two-stage variant boot-
strap design. Initially, each variant TEE is assigned an init-variant,
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similar to the concept of Kubernetes init containers [7]. As illus-
trated in Figure 5, this design segregates files and settings into public
and private parts. The public part comprises the init-variant and
its settings, while the private part hosts the main variant-specific
files and settings in encrypted form. This setup ensures that un-
trusted orchestrators are only involved in the initial placement
of variant TEE containers, each loaded with an init-variant and
public settings. Following successful attestation, each init-variant
receives a variant-specific key and a variant identifier, allowing for
the decryption and setup of main variant-specific files and settings.
B n

.

* teeos.entrypoint * teeos.entrypoint
=“{init_binary}” =“{main_binary}”
* fs.mounts="...” « fs.mounts="...”
* tee.trusted_files * tee.encrypted.files|
=“{pub_file_path}” ="{priv_file_path}”
. b .

@ init-variant @ main-variant

Figure 5: Two-Stage Variant Bootstrap Example

We observe that the two stages necessitate distinct environments
and resources for execution. In particular, their security settings
such as allowed files, environment variables, IOCTLs and system
calls (syscalls) can also differ. These settings that regulate applica-
tion execution are typically specified in a specialized manifest file
provided by the TEE OS. This file is loaded, parsed and enforced
at its boot time. Therefore, we require the support of two-stage
manifests, where a different second-stage manifest can be installed
post launch. We allow access to this installation interface via TEE
OS’s customized interfaces. To prevent abuse, we further require
one-time installation: once setup, it is locked, unmodifiable, and
not accessible by the main variant executing in the second stage.

The stage transition is designed to be one-way, triggered by the
first exec() syscall from the init-variant. The newly installed man-
ifest is then enforced and supersedes any prior settings following
this transition. This phased lifecycle design not only simplifies the
init-variant’s functionality, reducing its TCB and attack surfaces,
but also minimizes the attack surface for each specific variant by
limiting its environment and resources strictly to necessities.
Attestable variant initialization and updates. Variants are dy-
namically initialized following the protocol depicted in Figure 6.
Initially, the orchestrator schedules the monitor TEE and a set of
variant TEEs (starting with init-variant) per the model owner’s
request, where they await initialization commands @. The model
owner first verifies the authenticity and integrity of the monitor
TEE through a challenge-response attestation based on a hardware-
signed TEE report, and establishes a secure connection with it @.
An MVX configuration is then provisioned to the monitor ®. To pro-
tect against potential replay attacks, a nonce is used. Based on the
MVX specifications, a selection of partition variants is made (either
deterministically or randomly) from the pre-established pool and
maintained within the monitor @. Following this, the monitor and
variants setup secure channels through RA-TLS [54] implemented
at the socket level. It then assigns a variant-specific key and its
corresponding variant identifier to each variant ®. The init-variant
installs this key into the TEE OS for future decryption, fetches the
encrypted variant-specific manifest and files, and establishes secure
connections with adjacent partitions if required. The TEE OS con-
figures and locks the manifest, attesting its successful installation
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by sending evidence back to the monitor ®. Upon receipt of this
confirmation, the monitor verifies and binds each connection with
the respective variant and meta data @. Finally, the initialization
results, along with the nonce, are sent back to the model owner
for verification ®. During inference runtime, users perform a com-
bined attestation of all TEEs through the monitor, then provision
their secret inputs for subsequent execution, which is carried out
through the partitioned variants in a pipelined manner.

0 -

2-Stage Variant Monitor

@
WaitInit response(TEE_report)

Model Owner
challenge

@
Verify
Init/Update(MVX_conf, nonce) @ TEE_report

> Init(MVX_conf) @

init-variant

« Install key, (socket-level) RA-TLS

« Fetch files
* Install manifest
 Establish secure< o
connections  ® tInlIllVaTl;mtResult + Verify install_evidence
Waitinput (install_evidence, nonce) >~ Set/Update variant binding
@

Initvariant: key,, id,, nonce [®

<sockfd, meta, variant_hash:

hit/UpdateResult (results, nonce) @

Verify results
Verify nonce

®

Figure 6: Workflow of Variant Initialization/Updates

We support full and partial variant updates, following similar
workflows to initialization. Full updates reshuffle partition sets and
reconstruct bindings, while partial updates replace or scale certain
variants, updating bindings in an appending-only way for audit-
ing purposes. While reusing TEEs could reduce overhead, we opt
against it in updates due to (i) potential security risks from incom-
plete and unsound software-level cleanups, which can open up
new attack surfaces and contradict our security-first principle, and
(ii) updates may include changes to model partitions or runtimes,
making the associated loading costs unavoidable.

Selective MVX. In practice, not all parts within a trained model
requires protection. For instance, many modern ML models utilize
transfer learning [111], which is cost-effective and relies on smaller
datasets. Typically, these models begin with a publicly available
trained model from repositories like Huggingface and are fine-
tuned by retraining certain final layers or by partially altering the
model. Consequently, only a subset of layers — those that contain
sensitive information — need to be protected. Similarly, different
operators, parameters, or instructions show varied susceptibility
to faults [38, 55, 70, 73, 75]. Based on this observation, we have
designed selective MVX to focus on hardening the partitions most
susceptible to threats while offering flexibility that can reduce the
resource waste and overhead associated with static full replication.
Specifically, we support vertical scaling by allowing certain parti-
tions to activate MVX, and horizontal scaling by controlling the
number of variants per MVX-enabled partition. These can be con-
figured to adapt to dynamic online environments, to meet varying
security, Quality of Service (QoS), or resource demands.

Execution model. Variant TEEs are organized by the monitor into
a DAG that mirrors the original model topology, processing private
user data in a pipelined manner. Specifically, sequential execution
occurs when data is processed linearly, with each batch complet-
ing all partition stages before the next batch begins. Conversely,
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pipelined execution involves processing batch streams simulta-
neously, with each pipeline stage handling a different batch. We
intentionally avoid installing all or multiple partitions within the
same variant TEE for enhanced security and isolation, preventing
checkpoint bypass if a variant has already been compromised. The
monitor initially dispatches identical user inputs to variants in the
first partition for inference and gathers their intermediate results.

For efficient execution, we propose a slow-fast path design as
illustrated in Figure 7. With a slow path, the monitor suspends
at designated checkpoints to evaluate the variant outputs against
predefined rules and employs a voting strategy to decide on further
actions. We use criteria-based consistency checks with thresholds
and different metrics (§5.2) to differentiate attacks from benign
divergences. This allows for evaluation based on variant-specific
characteristics that may result from diversification or inference
variability. Specifically, we apply relevant consistency metrics (e.g.,
similarity- or error-based measures) to variant pairs and adjust
thresholds based on variant noise levels to balance the precision
and recall of attack identification in the case of divergences. After
a successful evaluation, it will select and replicate the intermediate
results, then forward them to the subsequent partition variants.
The fast path, on the other hand, allows outputs to directly fall
through to the next partition variants. By default, MVTEE operates
in a hybrid mode. Under selective MVX, it automatically activates
the slow path when multiple variants are applied per partition and
switches to the fast path when a single variant is used. Furthermore,
all inter-TEE data communications are encrypted and authenticated
with unique sequence numbers for freshness, and are preferably
oblivious to avoid timing side channels.

FAST Path input —D—’:’—D—' output
sLowpath  input —>[_ |+ > output

check check check

MVTEE Default

check :‘In:'(’k if unt
Figure 7: Slow-Fast Path Design

In line with our CP/US architecture, MVTEE implements cross-
process voting. Different voting mechanisms imply varying levels
of agreement, impacting detection reliability, with panel sizes also
involving reliability/resource trade-offs. We default to a unanimous
consent strategy to prioritize security and reliability, but MVTEE is
flexible in terms of voting algorithms. Under this strategy, we allow
both synchronous and asynchronous execution modes:

e Sync mode: The monitor pauses at specific checkpoints to evalu-
ate all variant outputs against predefined rules. Any instance of
dissent prompts, the monitor performs an immediate response
to adjust the execution.

e Async Mode: Given the execution time can vary significantly
among variants in practice, we design a cross-validation strategy
to mitigate the impact of delays in variant execution, as demon-
strated in Figure 8. The pipeline is allowed to proceed once a
majority consensus is reached at the checkpoints. When results
from delayed variants are received, and if any dissent is noted, we
react to the execution at the earliest next checkpoint. This mode
is inherently inapplicable for full MVX without partitioning.
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Figure 8: Execution in Sync/Async Mode

5 Implementation

Our prototype consists of 3.6K Lines of Code (LoC) of Python and
1.7K LoC of C. It is composed of two main parts: the offline ML
MVX tooling and the runtime TEE MVX system. The runtime of
MVTEE is extended based on GRAMINE-SGX/TDX (v1.7) [60, 112].

5.1 Offline ML MVX Tool

We develop an offline ML MVX tool to streamline and automate
the process of model partitioning and the generation of variants
for each partition, as presented in Figure 2. This tool offers several
modules: model inspection, model partitioning, and the construc-
tion of partition variants. The inputs required for this tool are: (i)
the target model file for secure inference, (ii) configuration files
that detail model partitioning settings and variant specifications,
and (iii) base GRAMINE manifest files for restricting the environ-
ment and resources. The final outputs include partition variants
with their respective GRAMINE manifests in encrypted form. Be-
sides, we generate monitor and base variant container images that
package the GRAMINE TEE OS, TEE-related files, along with the
corresponding public executables and manifests. For real-world
deployments, declarative configurations can be integrated into the
Security Development Lifecycle for diversification customization,
and auto variant correctness verification can be added into CI/CD.
Model inspection and partition modules. These modules are
built on ONNX. Through model inspection, we collect information
such as IR version, graph inputs/outputs, initializers, and nodes,
including their indices and detailed metadata. MVTEE’s partition
module currently offers two modes: manual and automatic. In man-
ual mode, the module functions as a graph slicer, generating graph
slices based on the specified node names or indices. This mode is
practical for model owners with expert knowledge on how to create
effective checkpoints (e.g., they have prior knowledge on which op-
erators are more sensitive). Automatic partitioning implements the
random contraction algorithm. It offers a customizable weight func-
tion to define formalized soft preferences and a constraint function
to specify hard requirements. By default, the module is configured
to prioritize balanced partitions in terms of size to trade-off between
security and performance. With additional information, such as the
security/safety sensitivity of nodes, the module can be extended
to prioritize other objectives. Specifically, users set: (i) the target
number of partition sets, (ii) the number of partitions/checkpoints
per set, and (iii) customized preferences and constraints settings to
obtain randomized model partitions. To speed up the process, our
tool also supports parallel graph partitioning.

Variant construction module. This module first supports a set
of ONNX to ONNX transformations/optimizations elaborated in
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§4.2 to achieve model graph-level diversification on the partitioned
subgraphs. For diversification at the inference instance level, we
generate variant-specific GRAMINE manifests and bootstrap scripts
based on variant configurations in JSON format. This configura-
tion specifies the runtime, dependencies and runtime-specific di-
versification strategies (e.g., applied compiler passes, third-party
toolchain flags, and the type of TVM executor in the case of a TVM
runtime). Other diversification strategies such as N-versioning,
conventional compiler-assisted diversification, or a combination
with system-level diversification settings can be applied indepen-
dently. With GRamINE, MVTEE supports various inference runtimes
on x86-64 CPU TEEs, including ORT, TVM, OpenVINO, Pytorch,
TensorFlow, and TensorFlow Lite. As the final step, we use the
gramine-sgx-pf-crypt utility to encrypt the manifest, necessary
files, and dependencies using a variant-specific key.

5.2 Runtime TEE MVX System

Enhancements to GRAMINE. We first extend GRAMINE to support
the two-stage manifests, which can be enabled via a newly added
manifest option. Specifically, we allow the one-time installation of
a second-stage manifest via pseudo file system interfaces. Not all
features in the standard GRAMINE manifest are supported for the
second-stage; MVTEE focuses on the security-related ones, such as
trusted/encrypted files settings and syscall restrictions. The new
manifest takes effect on the subsequent exec() syscall. It mandates
execution solely from GRAMINE’s encrypted files, as per the design
of init-variant, and prohibits any key manipulation in the second
stage, ensuring all necessary configurations are installed by the
init-variant prior to main variant execution. Upon exec(), we re-
set the status as thoroughly as possible before switching to the
second-stage manifest to ensure that the two stages are completely
independent. This includes zeroing out all applicable virtual mem-
ory areas, closing unrelated file descriptors, resetting the program
break, clearing thread-local storage, removing custom signal han-
dlers, unlinking ELF objects, and unloading any dynamically loaded
libraries or ELF objects in use of the init-variant stage.

For enhanced security, we enforce GRAMINE’s code as RX-only
pages, using the new page permission management instructions
provided by the Enclave Dynamic Memory Management feature
of SGX2 [81]. Besides, rather than depending on the RA-TLS li-
brary to establish secure connections, we enhance GRAMINE to
support socket-level RA-TLS and data encryption. This lower-level
enforcement helps prevent potential application-level bypasses and
ensures that all data transmitted over the network is consistently
authenticated and encrypted (with AES-GCM-256). Additionally,
we extend GRAMINE to include syscall restrictions, further reducing
the runtime attack surface across separate variant execution stages.
Monitor and init-variant. The MVTEE runtime is implemented
following the CP/US design, where the monitor and the variants
operate in separate TEEs based on the enhanced GRAMINE. They can
be deployed either in a co-located or distributed setting. For TCB
and attack surface minimization, we only implement the necessary
functionalities in the monitor and init-variant. This also reduces the
extra Enclave Page Cache (EPC) consumption, and with the support
of dynamic memory management provided in TEE backends, the
TEE initialization overhead can be minimized.
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We implement the monitor-side of the dynamic variant initial-
ization and update protocol. The monitor maintains MVX settings
and manages all variants’ attestation, key distribution and binding
updates. We also implement the input distribution, checkpoint syn-
chronization and output replication within the monitor following
the design detailed in §4.3. To assess the consistency of outputs
from different partition variants, we implement configurable check-
ing based on criteria such as cosine similarity, mean squared error,
maximum absolute difference, and np. testing.assert_allclose
(with predefined absolute and relative tolerances). Moreover, we
implement the designed efficiency optimizations including selective
MVX, slow-fast path and asynchronous cross-validation execution.

The init-variant is implemented following the two-stage boot-
strap design. The core functionality of init-variant comprises the
variant-side of the init/update protocol, leveraging the extended
GRAMINE’s one-time manifest installation for the second stage.

6 Evaluation

In this section, we evaluate the MVTEE system’s performance to
assess its practicality. In addition, we conduct a security analysis of
MVTEE’s attack surfaces, discussing the applied mitigations.

6.1 Experimental Setup

Testbed. Our experiments are conducted on dual-socket platforms
with Intel Xeon Gold 6354 CPUs (36 cores per socket), 378GB of
RAM, 128GB of SGX EPC and 10 Gbps Ethernet, running Ubuntu
22.04. We use numactl with cpunodebind and membind to bind
processes to a single Non-Uniform Memory Access (NUMA) domain
for consistent results. We perform warmup runs and repeat trials
to minimize measurement noise, with average values reported.
Models. We evaluate the pre-trained DNN models: EfficientNet-b7,
GoogleNet, Innception V3, MnasNet, MobileNet V3, ResNet-152
and ResNet-50. We use 32-bit floating-point precision with a batch
size of 1 and input data size of 3x224x224 by default.

Partitions. We generate the partitions using our random-balanced
algorithm. They are tested for correctness before evaluation.
Variants. To evaluate the fundamental performance of MVTEE and
the impact of selective MVX, we apply identical/replicated variants
running on ONNX runtime (v1.18.1) to minimize execution time
variations among variants. For real setup performance analysis, we
build variants run on either ONNX runtime or TVM (v0.15.0) graph
executor, implementing multi-level diversification (§4.2).
Execution. We measure throughput and end-to-end latency under
both sequential and pipelined execution. Unless otherwise noted,
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all inter-variant and variant-monitor data is encrypted (with AES-
GCM-256) and transferred via TCP/IP sockets. We apply MVTEE’s
hybrid execution mode by default (Figure 7). Asynchronous execu-
tion is activated only in real setup evaluations, addressing execution
time differences among different variants.
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Figure 10: Encryption and Checkpoint Overheads
6.2 Fundamental Performance of MVTEE

We first evaluate the performance impact of our random-balanced
partition strategy with different numbers of partitions. Results de-
picted in Figure 9 show performance across different models on a
full fast path. We establish the performance of the original model as
our baseline. In sequential execution, the throughput of inference
decreases by 1.7% to 62.2% compared to the baseline, worsening
as the number of partitions increases. Correspondingly, latency
rises by 1.7% to 164.3%. However, in pipelined execution, MVTEE
achieves throughputs 1.7x to 5.4x higher than the baseline and
reduces latency by 63.4% to 84.4%. Additional partitions could pos-
sibly bring further performance benefits, since they form a longer
processing pipeline and increase parallelism. This indicates that
while checkpoint insertion via partitioning introduces overheads,
the resulting pipeline opportunities can successfully hide them
through compute-communication overlapping.

Next, we evaluate the encryption and checkpointing overheads
stemming from MVTEE’s cross-process monitoring architecture
and its specific threat model. Our experiments use a 5-partition
setup with no encryption and a full fast path as the baseline. The
checkpointing overhead is measured on a full slow path. Figure 10
shows that encryption and checkpointing contributed to an overall
overhead of 13.6% to 50.7% in sequential execution and an even
higher proportion in pipelined execution - ranging from 50.4%
to 93.6%. These overheads are more impactful on smaller models
such as MobileNet and MnasNet. In particular, checkpointing is a
major source of overhead due to additional variant-monitor data
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Figure 9: Performance Impact of Random-Balanced Partitioning
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Figure 11: Normalized Performance of Horizontal Variant Scaling Using Selective MVX
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Figure 12: Normalized Performance of Vertical Variant Scaling Using Selective MVX

transmissions and cryptographic operations, while the verification
computation typically completes quickly enough. However, we
highlight that through MVTEE’s fast path design, the overall over-
head can be mitigated by up to 28.3% in sequential execution and
up to 86.5% in pipelined execution. Additionally, while encryption
overhead is inevitable, it can be optimized through more efficient
cryptographic algorithms and implementations, or by limiting the
size of data transferred between partitions.

6.3 Performance of Selective MVX

We analyze the performance of selective MVX by examining vertical
and horizontal scaling of MVX configurations. We keep the original
model performance as our baseline.

We evaluate horizontal scaling in a 5-partition setup, specifically
scaling the 3 partition with varying numbers (1, 3, and 5) of vari-
ants. Figure 11 illustrates the normalized performance outcomes. In
sequential execution, the overhead from horizontal variant scaling
is negligible compared to the partitioning-caused overhead (the dif-
ference between seq (1 var) and original). In pipelined execution,
the initial MVX activation (from 1 to 3 variants) imposes noticeable
overheads across models. Interestingly, adding more variants (from
3 to 5) has a lesser impact. We attribute this to the transition from
the fast path to the slow path in the MVX-enabled partition, which
requires additional synchronization and consistency checks. It can
further create bottlenecks in the MVX-enabled pipeline stage, caus-
ing subsequent stages to wait and slow down the overall pipeline.
Fine-grained pipeline optimizations could potentially alleviate this
issue. Note that all pipelined executions significantly outperform
the original models, achieving at least 1.6x throughput and less
than 0.7x latency across all scaling settings.

Figure 12 presents the normalized performance statistics for ver-
tical variant scaling, where we test varying numbers of partitions to
enable MVX, each running 3 variants. Specifically, we enable MVX
on the 3" partition for 1-MVX configuration and on the 34, 4th and

5th partitions for a 3-MVX configuration. In sequential execution,

throughput is maintained at a minimum of 0.4x and latency below
2.5x for both 1- and 3-MVX-enabled partitions. However, expanding
to a full 5-MVX configuration results in a significant performance
reduction, with throughput dropping to about 0.3x and latency
exceeding 3x for most models. In pipelined execution, the perfor-
mance decline is mitigated by concurrent processing benefits, in
particular in the case of 1- and 3-MVX-enabled partitions. In these
configurations, we highlight that the pipelined execution generally
outperforms the original models. Specifically, with 1-MVX-enabled
partition, we achieve throughput ranged from 1.7x to 3.8x and av-
erage latency from 0.3x to 0.6x; with 3-MVX-enabled partitions,
throughput is 0.9x to 3.3x and latency from 0.3x to 1.2x. However,
retaining the original performance under full MVX pipelined exe-
cution is challenging, with throughput varying between 0.2x and
1.0x and latency ranging from 1.0x to 4.1x. This is attributed to
early synchronization in the full MVX setup, which stalls pipelines,
delays data progression to subsequent stages, and reduces over-
all parallelism. We consider this as a lesser concern in general as
this setup is specifically reserved for scenarios where exhaustive
hardening is prioritized over performance considerations.

6.4 Performance of MVTEE in Real Setup

We test variants running on ORT or TVM graph executor, with
diversification at different levels to reflect real-world deployments.

First, we assess our asynchronous cross-validation execution
mode in a 5-partition MVTEE setup, activating MVX on the 224 and
3rd partitions, each with 3 variants. In this test, we specifically apply
a TVM variant with complex diversification for targeted security
checks, which leads to lagging performance. Figure 13 highlights
that, compared to synchronous execution, our asynchronous ap-
proach achieves a throughput increase of 5.2% to 34.2% in sequential
execution and 3.1% to 17.8% in pipelined execution. It also results in
an average latency reduction of 5% to 25.6% in sequential execution
and 3.1% to 15.2% in pipelined execution.
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Figure 14: MVTEE Performance in Real-World Setup

Further, we evaluate the real-world performance of MVTEE
deployment against the original inference baseline. We enable 3-
variant MVX execution on one partition (the 3™ partition) and
across three partitions (the 3rd, 4th, and 5th partitions), with by
default asynchronous execution. Figure 14 illustrates that in se-
quential execution, throughput is sustained at 0.4x to 0.8x for 1
MVX partition and 0.4x to 0.6x for 3 MVX partitions. Latency over-
head is recorded at 18.7% to 128.5% for 1 MVX partition and 64.4%
to 176% for 3 MVX partitions. Given MVTEE’s focus on security
and reliability, this performance level is considered acceptable. In
pipelined execution, performance improvements are observed: a
throughput increase of 82.4% to 209.4% and a latency reduction of
45.1% to 67.7% when 1 MVX partition is selectively activated; and
an 85.5% to 110.8% throughput with latency between -9.7% to 17%
is maintained when 3 MVX partitions are enabled, covering the
majority of the model. Since (i) not all parts of a model necessitate
hardening and (ii) mainstream managed cloud inference platforms
like Amazon SageMaker and Azure Al services provide built-in
support for streaming inference targeting real-time scenarios and
continuous large-volume data analysis, we highlight the practi-
cality of MVTEE'’s pipelined execution. We can achieve superior
performance by hardening only the most vulnerable subset of a
model and maintain comparable performance when the majority
of partitions are hardened under MVX.

6.5 Security Analysis

MVTEE comprises the following core components at runtime: mon-
itor, init-variant, and variant, each linked to a manifest and all
running on the TEE OS. We first describe the security properties
that these components must uphold: (i) the monitor, init-variant,
and TEE OS code must be integrity-protected, (ii) the code and data
(including manifests) of the variant and the internal state of TEE OS
must be confidentiality- and integrity-protected, (iii) all network
I/O must be confidentiality- and integrity-protected, (iv) file I/O
must be integrity-protected for the monitor and init-variant, and

confidentiality-protected for the variant, (v) the TEE OS must not
be vulnerable to privileged attacks, (vi) the monitor and init-variant
must be hardened against software and fault vulnerabilities, (vii)
tampering with all manifest files must be detectable, (viii) the chain
of trust of TEE attestation must reflect all loaded components and
remain immutable. In the following, we systematically study the
possible attack vectors and explain their mitigations.

Software vulnerabilities in variants. Attackers with access to
public APIs can send maliciously-crafted inputs to exploit memory-
safety or runtime errors in ML frameworks and libraries. Our em-
pirical analysis of various TensorFlow CVEs shows that MVTEE
can mitigate such attacks through the variants exemplified in Table
1. Variants generated from inference-instance-level transforma-
tions and traditional MVX diversification are the most effective
against these attacks. Certain model-graph-level transformations,
e.g., equivalent operator replacement, can also help by nullifying
vulnerabilities specific to certain operator implementations, but we
don’t highlight this as models are mathematical representations
and not directly tied to software vulnerabilities. Intuitively, variants
seem unnecessary since existing defenses or their combinations
can also mitigate these vulnerabilities. However, a single defense
is often inadequate due to attack diversity, while trivial combined
protection on one target is prohibitively expensive and often con-
flicting [133]. MVTEE is orthogonal and can be applied on top to
effectively detect broad classes of attacks.

Faults in variants. Attackers can induce runtime faults to ML infer-
ence locally or remotely (e.g., through a co-located container which
has access to vulnerable interfaces). For model-targeted attacks
(e.g., on operators, weights), graph-level transformations can alter
graph-level properties and thus change fault susceptibility, mak-
ing targeted faults unreliable or invalid. Existing algorithm-level
countermeasures can also be applied. To counter faults injected
at the ML framework/library level, inference-instance-level trans-
formations can be used. For instance, the FrameFlip attack targets
fault-vulnerable bits in the OpenBLAS [13] linear algebra backend,
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Table 1: TensorFlow Vulnerabilities and Defending Variants.
(OOB: Out of Bound Read/Write, UNP: Uninitialized/Null Pointers,
FPE: Floating Point Exception, IO: Integer Overflow,

UAF: Use After Free, ACF: Assertion Check Failures, RT: Runtime)

Type Example CVE Impact Variants e.g.
CVE-2021-41226 DoS Different RT
OOB CVE-2022-41883 Data corruption Bounds check
CVE-2022-41900 R/W primitives  Sanitizers
CVE-2023-25668 Code execution ~ ASLR
UNP CVE-2022-21739 DoS Different RT
CVE-2023-25672 Incorrect results  Sanitizers
DoS Different RT
FPE  CVE-2022-21725 Error handling
Incorrect results .
Compiler
10 CVE-2022-21727 thSa corruption ?;iii;::sRT
CVE-2022-21733 up :
Incorrect results  Compiler
DoS .
UAF  CVE-2021-37652 Data corruption lef.er.ent RT
. Sanitizers
Code execution
ACF  CVE-2022-35935 DoS Different RT
Error handling

but is ineffective against a variant using a different BLAS imple-
mentation (e.g., Eigen [2] or Intel MKL [124]). Certain fault attacks
are only possible on specific TEE hardware [137]. MVTEE supports
TEE-level variants to help mitigate these attacks.
Additional variant hardening. We harden the variants’ TEE
runtime/OS against privileged attacks, such as malicious exceptions
and signals [105], by cross-verifying host-reported signals against
TEE-reported exceptions. The TEE OS maintains the state of the
application’s requests and proactively cross-checks, e.g., the opened
files and the statue of network connections. We further shield pipes,
network and file system I/O by implementing automatic encryption
and decryption at the TEE OS level to ensure all data leaving the
TEE boundary remains confidential. This guarantees that only the
monitor and the specific variant itself, which hold the decryption
key, can access the data. The variant manifest by default blocks
all command-line arguments and environment variables from the
untrusted host and only enables through a controlled allow-list
when necessary. It is impossible for attackers to abuse the variant
manifest installation feature at the application level, as we enforce
a one-time and one-way manifest installation by init-variant, and
the interface is disabled during the variant execution stage.
Attacks on init-variant and initialization/updates. MVTEE
monitor must perform attestation to establish trust in init-variant
before distributing any variant-specific keys and updating secure
bindings. TEE reports that include measurements of the entire soft-
ware stack of init-variant are sent to the monitor. Any discrepancies,
such as a malformed manifest or tempered code, can be detected
due to unexpected measurements. To defend replay attacks from
untrusted environments, we use a nonce check to ensure freshness.
Attackers may attempt to inspect the manifest and files of a
variant, but this would simply fail as they are encrypted with a
variant-specific key. Key rotation can be conducted on a regular
basis for proactive defense. Note that the variant-specific key acts
as a key derivation key for the TEE OS’s encrypted filesystem, while
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actual file encryption uses one-time keys. Therefore, it results in
much less ciphertext compared to use it for direct data encryption.
This prolongs the time to reach NIST recommended key usage
thresholds and lessens the burden of key rotation.

The hashes of trusted files used by init-variant are generated
and stored in its manifest at build time. TEE OS verifies all opened
files in this set against their reference hashes at runtime. MVTEE’s
encrypted files can suffer from rollback/replay attacks [79], where
an attacker reverts files to an older state. We partially mitigate
this by maintaining freshness metadata at runtime but a complete
defense requires independent monotonic counters. Fork attacks [15]
occur when an attacker creates diverging instances of the same
variant. MVTEE mitigates this by disallowing reuse or migration,
with its monitor ensuring secure variant binding before execution.
Monitor security. The monitor acts as the trust anchor and is
designed with minimal attack surfaces and a very low TCB. The
monitor is also hardened against any untrusted inputs. It interacts
with model owners and variants, ensuring that variant initialization
and updates adhere to the protocol. Further, the distributed nature
of cross-process monitoring allows for independent hardening of
the minimalistic monitor. Instead of running in a large-memory TEE
(e.g., Intel SGX2 or TDX) that sacrifices hardware-level memory
integrity checks, the monitor can be hosted in a small integrity-
enhanced TEE (e.g., Intel SGX1, using Message Authentication Code
and an integrity tree) to mitigate RAM corruption and replacement
without incurring additional secure memory swapping overheads.

7 Related Work and Discussions
7.1 TEE-based Secure Model Inference

TEEs have been applied in secure model inference through two
primary methods. The first is comprehensive TEE-shielding, where
the entire model is secured within TEEs [58, 63, 78]. While this
maintains confidentiality and accuracy same as the original model,
it comes with performance penalties mainly due to EPC constraints.
To tackle this, previous studies have proposed using lightweight
models [94], reusing a shared memory pool for model weights and
pipelining loading for layered processing [53, 65, 74], as well as
through model partitioning [65, 66]. MVTEE also leverages model
partitioning, but with a distinct focus on security and reliability
through MVX. It requires randomized partitioning and prioritizes
balanced checkpoint insertion for effective early threat detection
and response. Besides, MVTEE aims to support newer TEEs like
Intel SGX2, Intel TDX, and AMD SEV with large secure memory
capacities, in which case limited secure memory is less of a concern.

A second method is TEE-shielded DNN partition, which places
only a portion of the DNN model within TEEs while offloading
the rest to non-TEEs (e.g., GPUs) for computational efficiency
[30, 41, 84, 102, 107]. Existing studies broadly assume that the
offloaded segments do not reveal critical private information of
models. Yet, this assumption has been challenged under practi-
cal threat models. Though a recent approach suggests partition-
before-training to deliver security equivalent to full TEE-shielding
[140], it does not apply to post-training models - the focus of MV-
TEE. MVTEE strives to offer baseline protection equivalent to full
TEE-shielding, even with selective MVX. MVTEE further considers
stronger threat model including software vulnerabilities and faults.
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7.2 Defenses Against Relevant Attacks

Recent research has explored vulnerabilities in ML frameworks
and libraries, examining their security impacts, exploitability, root
causes, and suggesting remediation solutions [29, 42, 44, 56, 101,
139]. To counter memory corruptions within TEEs, one approach
is using memory-safe programming languages like Rust [4, 125]
or running in restricted WebAssembly sandboxes [3]. Additionally,
hardening techniques including ASLR [99], bounds checking [59],
fuzzing [21, 26] and symbolic execution [129] have been proposed.
MVTEE is orthogonal and can provide comprehensive protection
based on them. Moreover, research proposes Control-Flow Attesta-
tion [85] and provenance analysis [109] to detect runtime exploits,
addressing limitations in the built-in TEE attestation. Different from
these solutions, MVTEE not only detects anomalous executions but
also responds through termination, recovery, or updates.

To protect DNN models against faults, researchers have pro-
posed using hardware-level hardening [67] and model-level fault-
tolerance [37, 69] or fault detection [47, 68, 72, 73]. However, these
methods often suffer from limited detection capabilities — model-
level hardening fails to address faults induced at lower levels, e.g.,
within ML frameworks or libraries [70]. Some proposals suggest
relying on TEEs to protect DNNs from fault injections [70, 132],
but these can be broken by new types of attacks [86, 93, 108].
General defenses against TEE-targeted faults include hardware-
level mitigations [138], restricting access to vulnerable interfaces
[86], and software-based hardening [55]. MVTEE offers a generic
system-level defense which can be applied to existing TEEs with
minimal effort. With its distributed architecture, MVTEE can fully
leverage any available defenses by e.g., running variants on hard-
ware implemented with specific hardening or constructing variants
with software- or algorithm-level protection. Research shows that
neurons and weights in a DNN exhibit varying fault sensitivities
[38, 73, 75], and more generally, instructions can have different sus-
ceptibilities to faults and impacts on inference tasks [55, 70]. The
effectiveness of MVTEE’s selective MVX is based on this rationale.

7.3 MVX Design and Applications

A range of MVX system designs have been explored, with dis-
tinct choices on monitoring architectures and checkpoint strategies
[16, 28, 33, 40, 77, 97, 119, 120]. Researchers have also proposed
MVX systems using hardware features [57, 128], or running in a
distributed setting [96, 121]. MVTEE is specifically designed for
TEEs. To our knowledge, no TEE-based MVX design has been pro-
posed. We adopt cross-process monitoring and checkpointing on
outputs to align with our design goals. In particular, model inference
is typically multithreaded where non-deterministic scheduling can
complicate syscall-level synchronization and cross-checks [118].
MVTEE uses output-level checkpointing, enabling multithreaded
execution without implementing complex synchronization, which
also contributes to minimized TCB and reduced overhead. Other
monitoring solutions (e.g., in-process [134] or hybrid [119]) and
checkpointing options (e.g., on syscalls [45, 92, 135]) can be adapted
to MVTEE, but this involves non-trivial effort to conform to the
TEE threat model and its peculiarities.

Research on variant generation implements diversification at
different stages of the software lifecycle, including development,
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compilation, linking, installation, loading, and execution [19, 61,
110, 130]. Some researchers also suggest using heterogeneous ABIs
or ISAs [123, 127]. MVX has been proposed to harden user-space
applications [31], OS kernels [90], cloud microservices [32], and in
edge scenarios [20]. MVTEE aims to apply MVX in DNN inference,
an area less covered by prior research. It is designed with ML-native
characteristics in mind, particularly in its variant generation.
Resource overhead is a known MVX trade-off, providing more
comprehensive protection at the cost of increased resource usage.
Compared to the same level of single-target combined protection,
MVX trades resource for execution time. Different MVX settings
result in varying security/performance/resource trade-offs. In MV-
TEE, we target the protection of critical inference services that
prioritize security and safety. Through selective MVX, we allow
replicating only the subset of models more susceptible to threats,
reducing the overheads of full static replication. Integrating MVTEE
into inherent cloud redundancy patterns like Kubernetes ReplicaS-
ets [8] or leveraging underutilized hardware on demand can further
mitigate costs. Selective and asynchronous execution are common
optimization mechanisms, also implemented in some other MVX
systems [122, 136]. MVTEE incorporates unique adaptations, such
as runtime variant initialization and updates, along with asynchro-
nous cross-validation designs, aligned with its specific objectives.

7.4 Future Work

MVTEE currently targets secure inference using CPU TEEs, which
are more accessible, widely deployed, and well-studied targets of
advanced attacks. Adapting MVTEE to domain-specific (xPU) TEEs
requires further evaluation and non-trivial porting efforts, which
we plan to work on. While this work focuses on DNNs, running
large Foundation Models within CPU TEEs is also practical, offer-
ing flexibility and cost-effectiveness. We may explore MVTEE’s
applicability to these models and address their specific challenges.
Additionally, investigating the trade-offs between security, per-
formance, and resource utilization introduced by different MVX
strategies is an interesting topic for future research.

8 Conclusion

Under a practical threat model, TEE-shielded model inference re-
mains susceptible to a variety of software vulnerabilities and faults,
which could break its security and reliability promises. We present
MVTEE, a TEE-based model inference system applying MVX for
elevated confidentiality and integrity guarantees. MVTEE lever-
ages model partitioning and the heterogeneous nature of the in-
ference stack to generate MVX checkpoints and variants. Based
on cross-process monitoring and two-stage variant bootstrapping,
MVTEE can securely run multiple, diversified inference variants
concurrently, enabling timely threat detection and response. With
efficiency optimizations including asynchronous selective execu-
tion, we show that MVTEE provides a practical deployment model
well-suited for security- and safety-critical model inference.
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